穷举vs暴搜vs深搜vs回溯vs剪枝(典型算法思想)—— OJ例题算法解析思路

回溯算法的模版

cpp 复制代码
void backtrack(vector<int>& path, vector<int>& choice, ...) 
{
    // 满⾜结束条件
    if (/* 满⾜结束条件 */) 
    {
        // 将路径添加到结果集中
        res.push_back(path);
        return;
    }
    // 遍历所有选择
    for (int i = 0; i < choices.size(); i++) 
    {
        // 做出选择
        path.push_back(choices[i]);
        // 做出当前选择后继续搜索
        backtrack(path, choices);
        // 撤销选择
        path.pop_back();
    }
}

目录

回溯算法的模版

[一、46. 全排列 - 力扣(LeetCode)](#一、46. 全排列 - 力扣(LeetCode))

算法代码:

[1. 类的成员变量](#1. 类的成员变量)

[2. permute 函数](#2. permute 函数)

[3. dfs 函数](#3. dfs 函数)

[4. 回溯的核心思想](#4. 回溯的核心思想)

[5. 代码的优化空间](#5. 代码的优化空间)

[6. 代码的复杂度分析](#6. 代码的复杂度分析)

[7. 代码的改进版本](#7. 代码的改进版本)

总结

[二、78. 子集 - 力扣(LeetCode)](#二、78. 子集 - 力扣(LeetCode))

递归流程:

解法一:算法代码(剪枝->回溯->递归出口)

[1. 类的成员变量](#1. 类的成员变量)

[2. subsets 函数](#2. subsets 函数)

[3. dfs 函数](#3. dfs 函数)

[4. 回溯的核心思想](#4. 回溯的核心思想)

[5. 代码的优化空间](#5. 代码的优化空间)

[6. 代码的复杂度分析](#6. 代码的复杂度分析)

[7. 代码的改进版本(避免重复子集)](#7. 代码的改进版本(避免重复子集))

改进点:

[8. 总结](#8. 总结)

解法二:算法代码(回溯->剪枝->递归出口)

[1. 类的成员变量](#1. 类的成员变量)

[2. subsets 函数](#2. subsets 函数)

[3. dfs 函数](#3. dfs 函数)

[4. 代码的核心思想](#4. 代码的核心思想)

[5. 代码的优化空间](#5. 代码的优化空间)

[6. 代码的复杂度分析](#6. 代码的复杂度分析)

[7. 代码的改进版本(避免重复子集)](#7. 代码的改进版本(避免重复子集))

改进点:

[8. 总结](#8. 总结)


一、46. 全排列 - 力扣(LeetCode)

算法代码:

cpp 复制代码
class Solution {
    vector<vector<int>> ret;
    vector<int> path;
    bool check[7];

public:
    vector<vector<int>> permute(vector<int>& nums) {
        dfs(nums);
        return ret;
    }
    void dfs(vector<int>& nums) {
        if (path.size() == nums.size()) {
            ret.push_back(path);
            return;
        }
        for (int i = 0; i < nums.size(); i++) {
            if (!check[i]) {
                path.push_back(nums[i]);
                check[i] = true;
                dfs(nums);
                // 回溯 -> 恢复现场
                path.pop_back();
                check[i] = false;
            }
        }
    }
};

1. 类的成员变量

  • ret:用于存储所有可能的排列结果,类型为 vector<vector<int>>

  • path:用于存储当前正在构建的排列,类型为 vector<int>

  • check:用于标记某个元素是否已经被使用过,类型为 bool 数组,大小为 7(假设输入数组的长度不超过 7)。

2. permute 函数

  • 这是主函数,接收一个整数数组 nums 作为输入,并返回所有可能的排列。

  • 调用 dfs(nums) 开始深度优先搜索。

  • 最终返回 ret,即所有排列的结果。

3. dfs 函数

  • 这是递归函数,用于生成所有可能的排列。

  • 递归终止条件 :如果 path 的大小等于 nums 的大小,说明当前 path 已经是一个完整的排列,将其加入到 ret 中,并返回。

  • 递归过程

    • 遍历 nums 数组中的每一个元素。

    • 如果当前元素没有被使用过(check[i] == false),则将其加入到 path 中,并标记为已使用。

    • 递归调用 dfs,继续生成下一个位置的元素。

    • 回溯 :在递归返回后,撤销当前的选择(即从 path 中移除最后一个元素,并将 check[i] 重新标记为未使用),以便尝试其他可能的排列。

4. 回溯的核心思想

  • 回溯是一种通过递归来尝试所有可能的选择,并在每一步撤销选择以回到上一步的算法。

  • 在这段代码中,回溯体现在 path.pop_back()check[i] = false 这两行代码上。它们的作用是撤销当前的选择,以便尝试其他可能的排列。

5. 代码的优化空间

  • check 数组的大小是固定的 7,这意味着如果 nums 的大小超过 7,代码将无法正确处理。可以将 check 数组的大小动态设置为 nums.size()

  • 可以使用 std::swap 来直接在原数组上进行排列,从而减少 pathcheck 的使用,进一步优化空间复杂度。

6. 代码的复杂度分析

  • 时间复杂度 :O(n!),其中 n 是 nums 的大小。因为全排列的数量是 n!。

  • 空间复杂度:O(n!),用于存储所有排列的结果。递归栈的深度为 n,因此递归的空间复杂度为 O(n)。

7. 代码的改进版本

cpp 复制代码
class Solution {
    vector<vector<int>> ret;

public:
    vector<vector<int>> permute(vector<int>& nums) {
        dfs(nums, 0);
        return ret;
    }

    void dfs(vector<int>& nums, int start) {
        if (start == nums.size()) {
            ret.push_back(nums);
            return;
        }
        for (int i = start; i < nums.size(); i++) {
            swap(nums[start], nums[i]);
            dfs(nums, start + 1);
            swap(nums[start], nums[i]); // 回溯
        }
    }
};

在这个改进版本中,我们直接在原数组上进行排列,减少了 pathcheck 的使用,从而优化了空间复杂度。

总结

这段代码通过深度优先搜索和回溯的思想,实现了全排列的生成。代码的核心在于递归和回溯的处理,通过撤销选择来尝试所有可能的排列。

二、78. 子集 - 力扣(LeetCode)

递归流程:

解法一:算法代码(剪枝->回溯->递归出口)

cpp 复制代码
// 解法⼀:
class Solution {
    vector<vector<int>> ret;
    vector<int> path;

public:
    vector<vector<int>> subsets(vector<int>& nums) {
        dfs(nums, 0);
        return ret;
    }
    void dfs(vector<int>& nums, int pos) {
        if (pos == nums.size()) {
            ret.push_back(path);
            return;
        }
        // 选
        path.push_back(nums[pos]);
        dfs(nums, pos + 1);
        path.pop_back(); // 恢复现场
        // 不选
        dfs(nums, pos + 1);
    }
};

1. 类的成员变量

  • ret:用于存储所有子集的结果,类型为 vector<vector<int>>

  • path:用于存储当前正在构建的子集,类型为 vector<int>


2. subsets 函数

  • 这是主函数,接收一个整数数组 nums 作为输入,并返回所有可能的子集。

  • 调用 dfs(nums, 0) 开始深度优先搜索,0 表示从数组的第一个元素开始处理。

  • 最终返回 ret,即所有子集的结果。


3. dfs 函数

  • 这是递归函数,用于生成所有可能的子集。

  • 递归终止条件 :如果 pos 等于 nums 的大小,说明已经处理完所有元素,此时 path 中存储的就是一个子集,将其加入到 ret 中,并返回。

  • 递归过程

    1. 选择当前元素

      • nums[pos] 加入到 path 中。

      • 递归调用 dfs(nums, pos + 1),继续处理下一个元素。

      • 在递归返回后,撤销选择(即从 path 中移除最后一个元素),以便尝试不选择当前元素的情况。

    2. 不选择当前元素

      • 直接递归调用 dfs(nums, pos + 1),跳过当前元素,继续处理下一个元素。

4. 回溯的核心思想

  • 回溯是一种通过递归来尝试所有可能的选择,并在每一步撤销选择以回到上一步的算法。

  • 在这段代码中,回溯体现在 path.pop_back() 这一行代码上。它的作用是撤销当前的选择,以便尝试不选择当前元素的情况。


5. 代码的优化空间

  • 如果输入数组 nums 中包含重复元素,这段代码会生成重复的子集。可以通过排序和剪枝来避免重复子集的生成。

  • 可以将 path 改为引用传递,减少拷贝的开销。


6. 代码的复杂度分析

  • 时间复杂度 :O(2^n),其中 n 是 nums 的大小。因为每个元素有两种选择(选或不选),总共有 2^n 个子集。

  • 空间复杂度:O(n),递归栈的深度为 n。结果存储空间不计入空间复杂度。


7. 代码的改进版本(避免重复子集)

如果输入数组 nums 中包含重复元素,可以通过排序和剪枝来避免生成重复的子集。改进后的代码如下:

cpp 复制代码
class Solution {
    vector<vector<int>> ret;
    vector<int> path;

public:
    vector<vector<int>> subsets(vector<int>& nums) {
        sort(nums.begin(), nums.end()); // 排序,便于剪枝
        dfs(nums, 0);
        return ret;
    }

    void dfs(vector<int>& nums, int pos) {
        ret.push_back(path); // 每次递归都加入当前子集
        for (int i = pos; i < nums.size(); i++) {
            if (i > pos && nums[i] == nums[i - 1]) continue; // 剪枝,避免重复
            path.push_back(nums[i]);
            dfs(nums, i + 1);
            path.pop_back(); // 回溯
        }
    }
};
改进点:
  1. 排序 :先对 nums 排序,使得相同的元素相邻。

  2. 剪枝:在递归过程中,如果当前元素和前一个元素相同,并且不是第一次遇到该元素,则跳过,避免重复子集。

  3. 提前加入子集 :在每次递归开始时,直接将当前 path 加入到 ret 中,这样可以避免在递归终止时才加入子集。


8. 总结

这段代码通过深度优先搜索和回溯的思想,实现了求解数组的所有子集。代码的核心在于对每个元素的选择和不选择两种情况的分支处理,并通过回溯撤销选择以尝试其他可能性。如果输入数组包含重复元素,可以通过排序和剪枝来优化,避免生成重复子集。

解法二:算法代码(回溯->剪枝->递归出口)

cpp 复制代码
// 解法⼆:
class Solution {
    vector<vector<int>> ret;
    vector<int> path;

public:
    vector<vector<int>> subsets(vector<int>& nums) {

        dfs(nums, 0);
        return ret;
    }
    void dfs(vector<int>& nums, int pos) {
        ret.push_back(path);
        for (int i = pos; i < nums.size(); i++) {
            path.push_back(nums[i]);
            dfs(nums, i + 1);
            path.pop_back(); // 恢复现场
        }
    }
};

1. 类的成员变量

  • ret:用于存储所有子集的结果,类型为 vector<vector<int>>

  • path:用于存储当前正在构建的子集,类型为 vector<int>


2. subsets 函数

  • 这是主函数,接收一个整数数组 nums 作为输入,并返回所有可能的子集。

  • 调用 dfs(nums, 0) 开始深度优先搜索,0 表示从数组的第一个元素开始处理。

  • 最终返回 ret,即所有子集的结果。


3. dfs 函数

  • 这是递归函数,用于生成所有可能的子集。

  • 递归过程

    1. 将当前子集加入结果

      • 在每次递归调用开始时,直接将当前 path 加入到 ret 中。这是因为 path 在每一层递归中都表示一个有效的子集。
    2. 遍历数组元素

      • 从当前位置 pos 开始遍历 nums 数组。

      • 将当前元素 nums[i] 加入到 path 中,表示选择该元素。

      • 递归调用 dfs(nums, i + 1),继续处理下一个元素。

      • 在递归返回后,撤销选择(即从 path 中移除最后一个元素),以便尝试其他可能的子集。


4. 代码的核心思想

  • 子集的生成

    • 子集的生成可以看作是对每个元素的选择或不选择。

    • 通过递归和回溯,代码枚举了所有可能的选择组合。

  • 提前加入子集

    • 在每次递归调用开始时,直接将当前 path 加入到 ret 中。这是因为 path 在每一层递归中都表示一个有效的子集,无需等到递归终止才加入。

5. 代码的优化空间

  • 如果输入数组 nums 中包含重复元素,这段代码会生成重复的子集。可以通过排序和剪枝来避免重复子集的生成。

  • 可以将 path 改为引用传递,减少拷贝的开销。


6. 代码的复杂度分析

  • 时间复杂度 :O(2^n),其中 n 是 nums 的大小。因为每个元素有两种选择(选或不选),总共有 2^n 个子集。

  • 空间复杂度:O(n),递归栈的深度为 n。结果存储空间不计入空间复杂度。


7. 代码的改进版本(避免重复子集)

如果输入数组 nums 中包含重复元素,可以通过排序和剪枝来避免生成重复的子集。改进后的代码如下:

cpp 复制代码
class Solution {
    vector<vector<int>> ret;
    vector<int> path;

public:
    vector<vector<int>> subsets(vector<int>& nums) {
        sort(nums.begin(), nums.end()); // 排序,便于剪枝
        dfs(nums, 0);
        return ret;
    }

    void dfs(vector<int>& nums, int pos) {
        ret.push_back(path); // 将当前子集加入结果
        for (int i = pos; i < nums.size(); i++) {
            if (i > pos && nums[i] == nums[i - 1]) continue; // 剪枝,避免重复
            path.push_back(nums[i]);
            dfs(nums, i + 1);
            path.pop_back(); // 回溯
        }
    }
};
改进点:
  1. 排序 :先对 nums 排序,使得相同的元素相邻。

  2. 剪枝:在递归过程中,如果当前元素和前一个元素相同,并且不是第一次遇到该元素,则跳过,避免重复子集。


8. 总结

这段代码通过深度优先搜索和回溯的思想,实现了求解数组的所有子集。与解法一相比,解法二的代码更加简洁,直接通过循环和递归来生成所有子集。如果输入数组包含重复元素,可以通过排序和剪枝来优化,避免生成重复子集。代码的核心思想是对每个元素的选择和不选择进行枚举,并通过回溯撤销选择以尝试其他可能性。


重点:

递归的本质

递归是一种通过函数调用自身来解决问题的编程技巧。在递归过程中,问题的规模会逐渐减小,直到达到一个终止条件。递归的核心思想是分治,即将一个大问题分解为若干个小问题,然后分别解决这些小问题。

在子集问题中,递归的作用是对每个元素做出决策(选或不选),从而生成所有可能的子集。


为什么解法一不需要 for 循环?

在解法一中,递归的逻辑是对每个元素做出"选"或"不选"的决策。具体来说:

  1. 对于当前元素 nums[pos],有两种选择:

    • 选择它:将其加入 path,然后递归处理下一个元素(pos + 1)。

    • 不选择它:直接递归处理下一个元素(pos + 1)。

  2. 递归的终止条件是 pos == nums.size(),表示已经处理完所有元素。

这种递归逻辑已经隐含了对所有元素的遍历,因此不需要显式的 for 循环。


为什么解法二需要 for 循环?

在解法二中,递归的逻辑是显式地遍历数组中的元素,依次生成子集。具体来说:

  1. for 循环从 pos 开始遍历数组 nums,表示从当前位置开始选择元素。

  2. 对于每个元素 nums[i],将其加入 path,然后递归处理下一个元素(i + 1)。

  3. 在递归返回后,通过 path.pop_back() 回溯,恢复现场,尝试下一个元素。

这种递归逻辑通过 for 循环显式地遍历元素,确保每个元素都有机会被选中,并且避免生成重复的子集。


递归和 for 循环的关系

  • 递归的本质是遍历:递归确实可以遍历所有元素,但遍历的方式可以是隐式的(如解法一)或显式的(如解法二)。

  • 是否需要 for 循环 :取决于递归的逻辑设计。如果递归的逻辑已经隐含了对所有元素的遍历(如解法一),则不需要 for 循环;如果需要显式地遍历元素(如解法二),则需要 for 循环。


两种解法的对比

特性 解法一(无 for 循环) 解法二(有 for 循环)
递归逻辑 对每个元素做出"选"或"不选"的决策 显式遍历元素,生成子集
是否需要 for 循环
代码结构 更简洁 更直观
时间复杂度 O(2^n) O(2^n)

为什么解法二需要 for 循环?

解法二的递归逻辑是通过 for 循环显式地遍历元素,确保每个元素都有机会被选中,并且避免生成重复的子集。具体来说:

  1. 显式遍历元素for 循环从 pos 开始遍历数组 nums,表示从当前位置开始选择元素。

  2. 避免重复子集 :通过 for 循环从 pos 开始遍历,可以避免生成重复的子集。例如,如果已经选择了 nums[1],那么后续的子集只能从 nums[2] 开始选择,而不能回头选择 nums[0]

  3. 生成所有子集 :通过 for 循环和递归的结合,确保所有可能的子集都被生成。


总结

  • 递归确实可以遍历所有元素,但遍历的方式可以是隐式的(如解法一)或显式的(如解法二)。

  • 是否需要 for 循环取决于递归的逻辑设计。如果递归的逻辑已经隐含了对所有元素的遍历,则不需要 for 循环;如果需要显式地遍历元素,则需要 for 循环。

  • 解法一和解法二都是正确的,只是它们的递归逻辑和实现方式不同。解法一更简洁,解法二更直观。

相关推荐
挨代码14 分钟前
UE_C++ —— Gameplay Tags
c++·ue
敢嗣先锋41 分钟前
鸿蒙5.0实战案例:基于WaterFlow的页面滑动加载
c++·移动开发·harmonyos·arkui·组件化·鸿蒙开发·页面布局
weixin_399264291 小时前
QT C++ QtConcurrent::run 异步任务 简单例子
开发语言·c++
御风@户外1 小时前
qt5的中文乱码问题,QString、QStringLiteral 为 UTF-16 编码
c++·qt·乱码
JKHaaa1 小时前
单链表的排序(C++)
数据结构·c++·算法
东方忘忧1 小时前
QT MD5校验文件和数据的完整性
开发语言·qt
nqqcat~1 小时前
C语言机试编程题
c语言·开发语言·考研·算法
Tisfy1 小时前
LeetCode 1206.设计跳表:算法详解
算法·leetcode·职场和发展
阳光男孩011 小时前
力扣2454. 下一个更大元素 IV
算法·leetcode·职场和发展
tnnnnt1 小时前
今天锐评一下C#
开发语言·c#