CineMaster: 用于电影文本到视频生成的 3D 感知且可控的框架。

CineMaster是一种 3D 感知且可控的文本到视频生成方法允许用户在 3D 空间中联合操纵物体和相机,以创作高质量的电影视频。

相关链接

论文介绍

CineMaster是一种用于 3D 感知和可控文本到视频生成的新型框架。目标是让用户拥有与专业电影导演相当的可控性:在场景中精确放置物体、在 3D 空间中灵活操纵物体和相机,以及对渲染帧进行直观的布局控制。

CineMaster分两个阶段运行:

  • 第一阶段:设计了一个交互式工作流程,允许用户通过定位对象边界框和定义 3D 空间内的相机运动来直观地构建 3D 感知条件信号。

  • 第二阶段:这些控制信号(包括渲染的深度图、相机轨迹和对象类别标签)作为文本到视频扩散模型的指导,确保生成用户想要的视频内容。

此外,为了克服具有 3D 框和相机姿势注释的野生数据集的稀缺性,论文精心建立了一个自动化数据注释管道,从大规模视频数据中提取 3D 边界框和相机轨迹作为控制信号。大量定性和定量实验表明,CineMaster 明显优于现有方法,并实现了卓越的 3D 感知文本到视频生成。

物体和相机运动控制演示

物体运动控制演示

相机运动控制演示

它是如何工作的?

CineMaster是一个框架,它使用户能够在 3D 空间中操纵对象和相机以生成文本到视频。CineMaster 包含两个阶段。首先,我们提出了一个交互式工作流程,使用户能够以 3D 原生方式直观地操纵对象和相机。然后,控制信号从 3D 引擎渲染并输入到文本到视频的扩散模型中,指导用户生成想要的视频内容。

模型设计

网络架构概述。 论文设计了一个语义布局控制网,它由一个语义注入器和一个基于 DiT 的控制网组成。语义注入器融合了 3D 空间布局和类标签条件。基于 DiT 的控制网进一步表示融合的特征并添加到基础模型的隐藏状态。同时,我们通过相机适配器注入相机轨迹,以实现对物体运动和相机运动的联合控制。

数据集标记管道

数据集标记管道。 论文提出了一个数据标记管道,用于从视频中提取 3D 边界框、类标签和相机姿势。管道包括四个步骤:

  1. 实例分割:从视频前景中获取实例分割结果。

  2. 深度估计:使用 DepthAnything V2 生成度量深度图。

  3. 3D 点云和框计算:为每个实体识别具有最大掩码的帧,并通过逆投影计算每个实体的 3D 点云。然后,使用最小体积法计算每个实体的 3D 边界框。

  4. 实体跟踪和 3D 框调整:访问每个实体的点跟踪结果并计算每帧的 3D 边界框。最后,将整个 3D 场景投影到深度图中。

相关推荐
二川bro5 分钟前
AI与Web3.0:技术融合
人工智能·web3
CodeJourney.6 分钟前
基于DeepSeek与Excel的动态图表构建:技术融合与实践应用
数据库·人工智能·算法·excel
安步当歌11 分钟前
【论文#目标检测】Attention Is All You Need
图像处理·人工智能·目标检测·计算机视觉
刘大猫2613 分钟前
Arthas sc(查看JVM已加载的类信息 )
人工智能·后端·算法
前进的程序员15 分钟前
CentOS 系统 DeepSeek 部署
运维·人工智能·centos·deepseek
黎明沐白33 分钟前
PyTorch源码编译报错“fatal error: numpy/arrayobject.h: No such file or directory”
人工智能·pytorch·numpy
漫谈网络1 小时前
Ollama API 应用指南
ai·llm·aigc·api·ollama
qp1 小时前
26.OpenCV形态学操作
人工智能·opencv·计算机视觉
猿饵块1 小时前
opencv--图像
图像处理·opencv·计算机视觉
程序员X小鹿1 小时前
用了两天最近很火的秘塔AI「今天学点啥」,网址、文档秒变视频课程!虽不完美,但依然力挺!(附实测体验)
aigc