1.2 Kaggle大白话:Eedi竞赛Transformer框架解决方案02-GPT_4o生成训练集缺失数据

目录

    • [0. 本栏目竞赛汇总表](#0. 本栏目竞赛汇总表)
    • [1. 本文主旨](#1. 本文主旨)
    • [2. AI工程架构](#2. AI工程架构)
    • [3. 数据预处理模块](#3. 数据预处理模块)
      • [3.1 配置数据路径和处理参数](#3.1 配置数据路径和处理参数)
      • [3.2 配置API参数](#3.2 配置API参数)
      • [3.3 配置输出路径](#3.3 配置输出路径)
    • [4. AI并行处理模块](#4. AI并行处理模块)
      • [4.1 定义LLM客户端类](#4.1 定义LLM客户端类)
      • [4.2 定义数据处理函数](#4.2 定义数据处理函数)
      • [4.3 定义JSON保存函数](#4.3 定义JSON保存函数)
      • [4.4 定义数据分片函数](#4.4 定义数据分片函数)
      • [4.5 定义分片处理函数](#4.5 定义分片处理函数)
      • [4.5 定义文件名排序函数](#4.5 定义文件名排序函数)
    • [5. 数据整合模块](#5. 数据整合模块)
      • [5.1 加载数据并生成分片](#5.1 加载数据并生成分片)
      • [5.2 初始化LLM客户端并测试](#5.2 初始化LLM客户端并测试)
      • [5.3 并行处理数据生成](#5.3 并行处理数据生成)
      • [5.4 合并处理结果](#5.4 合并处理结果)
      • [5.5 保存最终结果](#5.5 保存最终结果)

0. 本栏目竞赛汇总表

Kaggle竞赛汇总

1. 本文主旨

  • 大白话:由于在上一篇文章的数据探索中,我们发现了部分训练数据的错误解释存在缺失,因此直接使用GPT_4o+人设提示词工程,对训练集数据存在的错误解释缺失问题的处理。
  • 通过本文可收获技能:API调用AI接口、人设提示词工程案例、复杂的数据处理与缓存处理。
  • 上文回顾Eedi大模型蒸馏方案01-竞赛信息解读与数据理解

2. AI工程架构

数据整合模块 初始化客户端 加载数据 并行处理生成 合并结果 保存CSV AI并行处理模块 定义数据处理函数 定义LLM客户端 定义JSON保存函数 定义分片函数 定义排序函数 数据预处理模块 配置路径和参数 导入依赖库 配置API和输出

3. 数据预处理模块

3.1 配置数据路径和处理参数

python 复制代码
data_path = "~/work/eedi_synthetic_data/MalAlgoQA_format.csv"
index_start = 0
index_end = len(df)
step = 100
max_workers = 2

3.2 配置API参数

python 复制代码
model_config = dict(
    openai_api_base = "https://testshellapi.kimi.asia/v1", 
    api_key = "****",
    model = "gpt-4o",
    default_system_prompt = """
        ##Task
        You are a Mathematics teacher. Your task is to reason and identify the ConstructName and SubjectName and then the misconception behind the user input Incorrect Answers with the Question.
        ConstructName is Most granular level of knowledge related to question, appears to describe the specific mathematical method or procedure used to solve the question. It explains the technique or approach needed to reach the answer.
        SubjectName is More general context than the construct, represents the broader mathematical topic or category that the question belongs to.
        Misconceptions are a mistake in conceptual understanding and they have relations with all the applications of those concepts. For example, a single misconception on the connections among proportional relationships (part/whole, part/part, whole/part) can cause problems in identifying those patterns in drawings and can be the cause of failing to realize all parts must be of equal size, therefore associating the denominator of the fraction with the total number of parts regardless their size.
        Answer concisely what misconception it is to lead to getting the incorrect answer.
        Do not use "The misconception is" to start your answers.
        Do not mention the concrete details of the question or answers. 

        ##User input
        Question: The question text
        A: multiple choice answer A text
        B: multiple choice answer B text
        C: multiple choice answer C text
        D: multiple choice answer D text
        Correct Answer: The correct answer text

        ##You should answer in the following JSON format
        {
            "ConstructName": "here writes the constructName",
            "SubjectName": "here writes the SubjectName"
            "MisconceptionAName": "here writes the answer A's misconception.",
            "MisconceptionBName": "here writes the answer B's misconception.",
            "MisconceptionCName": "here writes the answer C's misconception.",
            "MisconceptionDName": "here writes the answer D's misconception.",
        }
        """, # system prompt,
    default_temperature = 0.5,
    max_tokens = 256,
)

3.3 配置输出路径

python 复制代码
cache_folder = f"./cache_{model_config['model']}_model_misconceptions_result"
if not os.path.exists(cache_folder):
    os.makedirs(cache_folder)
output_data_path = f"misconception_data_{os.path.splitext(os.path.basename(data_path))[0]}_{model_config['model']}.csv"

4. AI并行处理模块

4.1 定义LLM客户端类

python 复制代码
class LLMChat:
    def __init__(self, openai_api_base, api_key, model, default_temperature, default_system_prompt, max_tokens=512):
        self.client = OpenAI(
            api_key = api_key,
            base_url=openai_api_base,
        )
        self.model = model
        self.default_temperature = default_temperature
        self.default_system_prompt = default_system_prompt
        self.max_tokens = max_tokens
    
    def chat(self, user_prompt, system_prompt=None, temperature=None):
        if not system_prompt:
            system_prompt = self.default_system_prompt
            
        if not temperature:
            temperature = self.default_temperature

        chat_response = self.client.chat.completions.create(
            model=self.model,
            temperature=temperature,
            messages=[
                {"role": "system", "content": system_prompt},
                {"role": "user", "content": user_prompt},
            ],
            max_tokens=self.max_tokens,
            response_format={"type": "json_object"}
        )
        return chat_response.choices[0].message.content

4.2 定义数据处理函数

python 复制代码
def process_row(args, debug=False):
    user_prompt = """
    Question: {question}
    A: {answer_a}
    B: {answer_b}
    C: {answer_c}
    D: {answer_d}
    Correct Answer: {correct_answer}
    """
    index, row = args
    ca = row["CorrectAnswer"]
    correctanswer = row[f"Answer{ca}Text"]
    input_user_prompt = user_prompt.format(
        question=row['QuestionText'],
        answer_a=row['AnswerAText'],
        answer_b=row['AnswerBText'],
        answer_c=row['AnswerCText'],
        answer_d=row['AnswerDText'],
        correct_answer=correctanswer,
    )
    ret_data = {}
    try:
        ret_data = vc.chat(input_user_prompt)
        if debug:
            print(ret_data+'\n')
    except Exception as e:
        print(f'An exception occur {str(e)}')
        ret_data['error'] = str(e)
        pass
    if debug:
        print('system: ', model_config['default_system_prompt'])
        print('>'* 50)
        print('user_input: ', input_user_prompt)
        print('>'* 50)
        print('assistant: ', ret_data)
    return ret_data

4.3 定义JSON保存函数

python 复制代码
def save_json(fn, obj):
    with open(fn, 'w') as f:
        json.dump(obj, f, ensure_ascii=False, indent=4)
    print(f"save file to {fn}")

4.4 定义数据分片函数

python 复制代码
def slice_range(start, end, step):
    if step <= 0:
        raise ValueError("步长必须大于0")
    
    result = []
    while start <= end:
        result.append(start)
        start += step
    if result[-1] < end:
        result.append(end)
    return result

4.5 定义分片处理函数

python 复制代码
def process_pairs(sliced_range):
    slices = []
    for first, second in zip(sliced_range, sliced_range[1:]):
        slices.append([first, second])
    return slices

4.5 定义文件名排序函数

python 复制代码
def natural_sort_key(filename):
    parts = re.findall(r'\d+', filename)
    return tuple(map(int, parts))

5. 数据整合模块

5.1 加载数据并生成分片

python 复制代码
df = pd.read_csv(data_path)
df.head()
sliced_range = process_pairs(slice_range(index_start, index_end, step))

df数据检查:

5.2 初始化LLM客户端并测试

python 复制代码
vc = LLMChat(**model_config)
r = process_row((7, df.iloc[7]), debug=True)

5.3 并行处理数据生成

python 复制代码
for slices in tqdm(sliced_range, total=len(sliced_range)):
    output_filepath = f'{cache_folder}/cache_res_{slices[0]}.json'
    if os.path.exists(output_filepath):
        print(f'cache file exists, skip {output_filepath}')
        continue
    df_tasks = df.iloc[slices[0]:slices[1]]
    results = []
    with ProcessPoolExecutor(max_workers=max_workers) as executor:
        results = list(tqdm(executor.map(process_row, df_tasks.iterrows()), total=len(df_tasks)))
    save_json(output_filepath, results)

5.4 合并处理结果

python 复制代码
f_names = glob.glob(f'{cache_folder}/*.json')
sorted_filenames = sorted(f_names, key=natural_sort_key)
f_names = sorted_filenames

results = []
for fn in f_names:
    with open(fn, 'r') as f:
        batch_results = json.load(f)
    results.extend(batch_results)

l = len(results)
results = [json.loads(r) for r in results]

5.5 保存最终结果

python 复制代码
df = df.iloc[:l]
gen_df = pd.DataFrame(results)
df = pd.concat([df, gen_df], axis=1)
df.to_csv(output_data_path, index=False)

(To be continued)

相关推荐
爱笑的眼睛112 小时前
PyTorch Lightning:重新定义深度学习工程实践
java·人工智能·python·ai
做cv的小昊2 小时前
VLM经典论文阅读:【综述】An Introduction to Vision-Language Modeling
论文阅读·人工智能·计算机视觉·语言模型·自然语言处理·bert·transformer
开放知识图谱2 小时前
论文浅尝 | 利用条件语句激发和提升大语言模型的因果推理能力(CL2025)
人工智能·语言模型·自然语言处理
KG_LLM图谱增强大模型2 小时前
[经典之作]大语言模型与知识图谱的融合:通往智能未来的路线图
人工智能·大模型·知识图谱·graphrag·本体论·图谱增强大模型
YJlio2 小时前
「C++ 40 周年」:从“野蛮生长的指针地狱”到 AI 时代的系统底座
c++·人工智能·oracle
机器之心2 小时前
小米开源首个跨域具身基座模型MiMo-Embodied,29个榜单SOTA
人工智能·openai
六行神算API-天璇2 小时前
架构实战:打造基于大模型的“混合搜索”系统,兼顾关键词与语义
人工智能·架构
0思必得02 小时前
[Web自动化] HTTP/HTTPS协议
前端·python·http·自动化·网络基础·web自动化
龙卷风04052 小时前
深入理解Spring AI Alibaba多Agent系统:图结构驱动的智能协作
人工智能·后端
mqiqe2 小时前
【Spring AI MCP】四、MCP 服务端
java·人工智能·spring