数据可视化02-PCA降维

一、PCA

**PCA做什么?**找坐标系。

**目标?**二维降到一维,信息保留最多。

**怎么样最好?**数据分布最分散的方向(方差最大),作为主成分(坐标轴)。

二、怎么找主成分?

PC1的确定: 每个点的 之和最小, 之和最大。

**PC2的确定:**过原点,且与PC1垂直。

**PCA降维的核心思想是:**用少数几个最重要的方向(主成分PC1)来表示数据,而不是用所有方向。

为什么可以降噪?

  1. 舍弃次要方向: 噪声(偏离的点)通常分布在次要方向(如PC2)上,降维时舍弃这些方向,相当于过滤了一部分噪声。

  2. 压缩噪声的影响: 即使噪声点在PC1上仍有偏离,它们的偏离程度比在原始数据中要小。

三、特征值与特征向量

(一)特征向量

简单来说,特征向量定义了新的坐标轴的方向

(二)特征值

特征值表示了每个主成分在数据集中的方差贡献率

(三)碎石图

相关推荐
jerryinwuhan1 分钟前
机器人模拟器(python)
开发语言·python·机器人
Python智慧行囊2 分钟前
图像处理-opencv(一)
人工智能·opencv·计算机视觉
AhriProGramming8 分钟前
Flask-SQLAlchemy精读-双语精选文章
python·算法·flask
列兵阿甘12 分钟前
知微传感Dkam系列3D相机SDK例程篇:Python获取内外参
python·数码相机·3d
Hy行者勇哥12 分钟前
文本描述驱动的可视化工具在IDE中的应用与实践
信息可视化
StarPrayers.16 分钟前
损失函数(Loss Function)、反向传播(Backward Propagation)和优化器(Optimizer)学习笔记
人工智能·笔记·深度学习·学习
麦麦大数据16 分钟前
F029 vue游戏推荐大数据可视化系统vue+flask+mysql|steam游戏平台可视化
vue.js·游戏·信息可视化·flask·推荐算法·游戏推荐
IT_陈寒20 分钟前
Vite 5个隐藏技巧让你的项目构建速度提升50%,第3个太香了!
前端·人工智能·后端
孤廖23 分钟前
吃透 C++ 栈和队列:stack/queue/priority_queue 用法 + 模拟 + STL 标准实现对比
java·开发语言·数据结构·c++·人工智能·深度学习·算法
Full Stack Developme36 分钟前
java.net 包详解
java·python·.net