数据可视化02-PCA降维

一、PCA

**PCA做什么?**找坐标系。

**目标?**二维降到一维,信息保留最多。

**怎么样最好?**数据分布最分散的方向(方差最大),作为主成分(坐标轴)。

二、怎么找主成分?

PC1的确定: 每个点的 之和最小, 之和最大。

**PC2的确定:**过原点,且与PC1垂直。

**PCA降维的核心思想是:**用少数几个最重要的方向(主成分PC1)来表示数据,而不是用所有方向。

为什么可以降噪?

  1. 舍弃次要方向: 噪声(偏离的点)通常分布在次要方向(如PC2)上,降维时舍弃这些方向,相当于过滤了一部分噪声。

  2. 压缩噪声的影响: 即使噪声点在PC1上仍有偏离,它们的偏离程度比在原始数据中要小。

三、特征值与特征向量

(一)特征向量

简单来说,特征向量定义了新的坐标轴的方向

(二)特征值

特征值表示了每个主成分在数据集中的方差贡献率

(三)碎石图

相关推荐
安全二次方security²14 小时前
CUDA C++编程指南(7.25)——C++语言扩展之DPX
c++·人工智能·nvidia·cuda·dpx·cuda c++编程指南
童话名剑18 小时前
训练词嵌入(吴恩达深度学习笔记)
人工智能·深度学习·word2vec·词嵌入·负采样·嵌入矩阵·glove算法
桂花很香,旭很美19 小时前
智能体技术架构:从分类、选型到落地
人工智能·架构
HelloWorld__来都来了19 小时前
2026.1.30 本周学术科研热点TOP5
人工智能·科研
共享家952719 小时前
搭建 AI 聊天机器人:”我的人生我做主“
前端·javascript·css·python·pycharm·html·状态模式
aihuangwu20 小时前
豆包图表怎么导出
人工智能·ai·deepseek·ds随心转
Hgfdsaqwr20 小时前
Python在2024年的主要趋势与发展方向
jvm·数据库·python
YMWM_20 小时前
深度学习中模型的推理和训练
人工智能·深度学习
中二病码农不会遇见C++学姐20 小时前
文明6-mod制作-游戏素材AI生成记录
人工智能·游戏
一晌小贪欢21 小时前
Python 测试利器:使用 pytest 高效编写和管理单元测试
python·单元测试·pytest·python3·python测试