目标
输入:你是谁?
输出:我们预训练的名字。
训练
为了性能好下载小参数模型,普通机器都能运行。
下载模型
python
# 方式1:使用魔搭社区SDK 下载
# down_deepseek.py
from modelscope import snapshot_download
model_dir = snapshot_download('deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B')
# 方式2:git lfs
# 需要提前安装git大文件存储 git-lfs
# 在线查看 https://www.modelscope.cn/models/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
git lfs install
git clone https://www.modelscope.cn/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B.git
训练模型
python
# finetune_deepseek.py
from datasets import Dataset
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
TrainingArguments,
Trainer,
DataCollatorForLanguageModeling
)
# 加载模型和分词器
model_name = "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B"
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True)
# 准备训练数据
train_data = [
{
"question": "你是谁?",
"answer": "我是黄登峰。"
},
{
"question": "你的名字是什么?",
"answer": "黄登峰"
},
{
"question": "你是做什么的?",
"answer": "我是深圳一家公司打工的牛马程序员。"
},
# 在这里添加更多的问答对
]
test_data = [
{
"question": "你的名字是什么?",
"answer": "我的名字是黄登峰。"
}
]
def format_instruction(example):
"""格式化输入输出对"""
return f"Human: {example['question']}\n\nAssistant: {example['answer']}"
# 转换数据格式
train_formatted_data = [{"text": format_instruction(item)} for item in train_data]
test_formatted_data = [{"text": format_instruction(item)} for item in test_data]
train_dataset = Dataset.from_list(train_formatted_data)
test_dataset = Dataset.from_list(test_formatted_data)
# 数据预处理函数
def preprocess_function(examples):
return tokenizer(examples["text"], truncation=True, padding="max_length", max_length=512)
# 对数据集进行预处理
train_tokenized_dataset = train_dataset.map(
preprocess_function,
batched=True,
remove_columns=train_dataset.column_names
)
test_tokenized_dataset = test_dataset.map(
preprocess_function,
batched=True,
remove_columns=test_dataset.column_names
)
output_dir = "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B_CUSTOM"
# 训练参数设置
training_args = TrainingArguments(
output_dir=output_dir,
num_train_epochs=3,
per_device_train_batch_size=4,
save_steps=100,
save_total_limit=2,
learning_rate=2e-5,
weight_decay=0.01,
logging_dir="./logs",
logging_steps=10,
)
# 创建训练器
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_tokenized_dataset,
eval_dataset=test_tokenized_dataset,
data_collator=DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False),
)
# 开始训练
trainer.train()
# 保存模型
trainer.save_model()
# 保存tokenizer
tokenizer.save_pretrained(output_dir)
模型格式
训练后的模型输出格式是Hugging Face格式,vllm 可以直接使用,ollama,llama.cpp默认是GGUF格式。
bash
# 需要用llama.cpp仓库的convert_hf_to_gguf.py脚本来转换
git clone https://github.com/ggerganov/llama.cpp.git
pip install -r llama.cpp/requirements.txt
# 如果不量化,保留模型的效果
python llama.cpp/convert_hf_to_gguf.py ./DeepSeek-R1-Distill-Qwen-1.5B --outtype f16 --verbose --outfile DeepSeek-R1-Distill-Qwen-1.5B.gguf
# 如果需要量化(加速并有损效果),直接执行下面脚本就可以
python llama.cpp/convert_hf_to_gguf.py ./DeepSeek-R1-Distill-Qwen-1.5B --outtype q8_0 --verbose --outfile DeepSeek-R1-Distill-Qwen-1.5B.gguf
验证
python
# test_model.py
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
def generate_response(prompt, model, tokenizer, max_length=512):
# 将输入格式化为训练时的格式
formatted_prompt = f"Human: {prompt}\n\nAssistant:"
# 对输入进行编码
inputs = tokenizer(formatted_prompt, return_tensors="pt", padding=True, truncation=True)
# 生成回答
with torch.no_grad():
outputs = model.generate(
inputs.input_ids,
max_length=max_length,
num_return_sequences=1,
temperature=0.7,
do_sample=True,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id,
)
# 解码输出
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
# 提取Assistant的回答部分
response = response.split("Assistant:")[-1].strip()
return response
def main():
# 加载微调后的模型和分词器
model_path = "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B_CUSTOM"
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True)
# 准备测试问题
test_questions = [
"你是谁?",
"你的名字是什么?",
"你是做什么的?",
]
# 测试模型回答
print("开始测试模型回答:")
print("-" * 50)
for question in test_questions:
print(f"问题: {question}")
response = generate_response(question, model, tokenizer)
print(f"回答: {response}")
print("-" * 50)
if __name__ == "__main__":
main()