54、深度学习-自学之路-自己搭建深度学习框架-15、解释梯度消失和梯度爆炸的问题。

复制代码
import numpy as np

sigmoid = lambda x:1/(1 + np.exp(-x))
relu = lambda x:(x>0).astype(float)*x

weights = np.array([[1,4],[4,1]])
activation = sigmoid(np.array([1,0.01]))

print("Activations")
activations = list()
for iter in range(10):
    activation = sigmoid(activation.dot(weights))
    activations.append(activation)
    print(activation)
print("\nGradients")
gradient = np.ones_like(activation)
for activation in reversed(activations):
    gradient = (activation * (1 - activation) * gradient)
    gradient = gradient.dot(weights.transpose())
    print(gradient)

print("Relu Activations")
activations = list()
for iter in range(10):
    activation = relu(activation.dot(weights))
    activations.append(activation)
    print(activation)

print("\nRelu Gradients")
gradient = np.ones_like(activation)
for activation in reversed(activations):
    gradient = ((activation > 0) * gradient).dot(weights.transpose())
    print(gradient)
    
'''
Activations
[0.93940638 0.96852968]
[0.9919462  0.99121735]
[0.99301385 0.99302901]
[0.9930713  0.99307098]
[0.99307285 0.99307285]
[0.99307291 0.99307291]
[0.99307291 0.99307291]
[0.99307291 0.99307291]
[0.99307291 0.99307291]
[0.99307291 0.99307291]

Gradients
[0.03439552 0.03439552]
[0.00118305 0.00118305]
[4.06916726e-05 4.06916726e-05]
[1.39961115e-06 1.39961115e-06]
[4.81403643e-08 4.81403637e-08]
[1.65582672e-09 1.65582765e-09]
[5.69682675e-11 5.69667160e-11]
[1.97259346e-12 1.97517920e-12]
[8.45387597e-14 8.02306381e-14]
[1.45938177e-14 2.16938983e-14]
Relu Activations
[4.8135251  4.72615519]
[23.71814585 23.98025559]
[119.63916823 118.852839  ]
[595.05052421 597.40951192]
[2984.68857188 2977.61160877]
[14895.13500696 14916.36589628]
[74560.59859209 74496.90592414]
[372548.22228863 372739.30029248]
[1863505.42345854 1862932.18944699]
[9315234.18124649 9316953.88328115]

Relu Gradients
[5. 5.]
[25. 25.]
[125. 125.]
[625. 625.]
[3125. 3125.]
[15625. 15625.]
[78125. 78125.]
[390625. 390625.]
[1953125. 1953125.]
[9765625. 9765625.]
'''
相关推荐
IT古董27 分钟前
第四章:大模型(LLM)】06.langchain原理-(3)LangChain Prompt 用法
java·人工智能·python
TGITCIC1 小时前
AI Search进化论:从RAG到DeepSearch的智能体演变全过程
人工智能·ai大模型·ai智能体·ai搜索·大模型ai·deepsearch·ai search
lucky_lyovo5 小时前
自然语言处理NLP---预训练模型与 BERT
人工智能·自然语言处理·bert
fantasy_arch5 小时前
pytorch例子计算两张图相似度
人工智能·pytorch·python
AndrewHZ6 小时前
【3D重建技术】如何基于遥感图像和DEM等数据进行城市级高精度三维重建?
图像处理·人工智能·深度学习·3d·dem·遥感图像·3d重建
飞哥数智坊7 小时前
Coze实战第18讲:Coze+计划任务,我终于实现了企微资讯简报的定时推送
人工智能·coze·trae
Code_流苏7 小时前
AI热点周报(8.10~8.16):AI界“冰火两重天“,GPT-5陷入热议,DeepSeek R2模型训练受阻?
人工智能·gpt·gpt5·deepseek r2·ai热点·本周周报
赴3357 小时前
矿物分类案列 (一)六种方法对数据的填充
人工智能·python·机器学习·分类·数据挖掘·sklearn·矿物分类
大模型真好玩7 小时前
一文深度解析OpenAI近期发布系列大模型:意欲一统大模型江湖?
人工智能·python·mcp
双翌视觉7 小时前
工业视觉检测中的常见的四种打光方式
人工智能·计算机视觉·视觉检测