54、深度学习-自学之路-自己搭建深度学习框架-15、解释梯度消失和梯度爆炸的问题。

复制代码
import numpy as np

sigmoid = lambda x:1/(1 + np.exp(-x))
relu = lambda x:(x>0).astype(float)*x

weights = np.array([[1,4],[4,1]])
activation = sigmoid(np.array([1,0.01]))

print("Activations")
activations = list()
for iter in range(10):
    activation = sigmoid(activation.dot(weights))
    activations.append(activation)
    print(activation)
print("\nGradients")
gradient = np.ones_like(activation)
for activation in reversed(activations):
    gradient = (activation * (1 - activation) * gradient)
    gradient = gradient.dot(weights.transpose())
    print(gradient)

print("Relu Activations")
activations = list()
for iter in range(10):
    activation = relu(activation.dot(weights))
    activations.append(activation)
    print(activation)

print("\nRelu Gradients")
gradient = np.ones_like(activation)
for activation in reversed(activations):
    gradient = ((activation > 0) * gradient).dot(weights.transpose())
    print(gradient)
    
'''
Activations
[0.93940638 0.96852968]
[0.9919462  0.99121735]
[0.99301385 0.99302901]
[0.9930713  0.99307098]
[0.99307285 0.99307285]
[0.99307291 0.99307291]
[0.99307291 0.99307291]
[0.99307291 0.99307291]
[0.99307291 0.99307291]
[0.99307291 0.99307291]

Gradients
[0.03439552 0.03439552]
[0.00118305 0.00118305]
[4.06916726e-05 4.06916726e-05]
[1.39961115e-06 1.39961115e-06]
[4.81403643e-08 4.81403637e-08]
[1.65582672e-09 1.65582765e-09]
[5.69682675e-11 5.69667160e-11]
[1.97259346e-12 1.97517920e-12]
[8.45387597e-14 8.02306381e-14]
[1.45938177e-14 2.16938983e-14]
Relu Activations
[4.8135251  4.72615519]
[23.71814585 23.98025559]
[119.63916823 118.852839  ]
[595.05052421 597.40951192]
[2984.68857188 2977.61160877]
[14895.13500696 14916.36589628]
[74560.59859209 74496.90592414]
[372548.22228863 372739.30029248]
[1863505.42345854 1862932.18944699]
[9315234.18124649 9316953.88328115]

Relu Gradients
[5. 5.]
[25. 25.]
[125. 125.]
[625. 625.]
[3125. 3125.]
[15625. 15625.]
[78125. 78125.]
[390625. 390625.]
[1953125. 1953125.]
[9765625. 9765625.]
'''
相关推荐
白熊1881 小时前
【计算机视觉】三维重建:tiny-cuda-nn:高性能神经网络推理与训练的CUDA加速库
人工智能·神经网络·计算机视觉
yuanjun04162 小时前
RTDETRv2 pytorch训练
人工智能·pytorch·python
杰克逊的日记2 小时前
什么是PyTorch
人工智能·pytorch·python
归去_来兮4 小时前
LightGBM算法原理及Python实现
人工智能·机器学习·集成学习·lightgbm
Blossom.1184 小时前
脑机接口技术:开启人类与机器的全新交互时代
人工智能·驱动开发·深度学习·计算机视觉·aigc·硬件架构·交互
ProgramHan4 小时前
什么是自然语言处理(NLP)?如何使用NLP进行情感分析?
人工智能·自然语言处理
小白白搭建4 小时前
wordperss AI插件:AI图文+视频+长尾关键词自动生成,已内置deepseek、kimi全模型,支持简单一键接入更多自定义API
人工智能·wordpress·ai插件·deepseek·wordprerss插件·wordpress ai插件
giszz5 小时前
【Web3】上市公司利用RWA模式融资和促进业务发展案例
人工智能·web3·区块链
消失的dk5 小时前
Softmax回归与单层感知机对比
python·深度学习
pen-ai5 小时前
【NLP】 26. 语言模型原理与概率建模方法详解(Language Models)
人工智能·语言模型·自然语言处理