一、seq2seq任务
特点:输入输出均为不定长的序列
自回归语言模型:
由前面一个字预测下一个字的任务
encoder-decoder结构:
Encoder-Decoder结构是一种基于神经网络完成seq2seq任务的常用方案
Encoder将输入转化为向量或矩阵,其中包含了输入中的信息
Decoder利用这些信息输出目标值
在这里,encoder的output和decoder每一个时间层的output拼接,用一个线性层和softmax激活函数计算权重(attention机制),再把权重张量和encoder的output点乘,把这个结果和decoder这个时间层的output拼接,再过一层gru和线性层得到下一个字的概率分布。
attention思想:
从decoder的query和encoder的key结合计算出权重(判断文本的重点),再作用在value上
soft attention:
hard attention:
teacher forcing:在预测下一个字时用输入decoder的正确的字来预测,这样做的问题是在预测时如果一个字错,后面会出现连环反应(就像在平时老师经常把正确答案给学生,在考试时学生答题效果不好);如果用非teacher forcing,会出现在训练模型时,一个字错导致后面出现连环反应。
二、transformer

在encoder-decoder交互attention阶段,q矩阵由decoder提供,与encoder的output里的key计算出attention矩阵,然后作用在encoder提供的value矩阵上,再过残差机制曾和LN层(使模型更稳定,防止梯度爆炸和梯度消失)
mask attention:
将输入decoder的文本做一次attention,对输出的矩阵进行mask(因为预测的过程中预测下一个字的过程中我们看不到下一个字,所以前一个字对下一个字没有attention)
通过mask控制训练方式:
三、采样策略
beamsearch在前文已经介绍过
temperature sample是基于对softmax的改进采样:
当T越大时,不同样本间的概率差值会减小
top-K采样:从概率最高的K个样本中采样
top-P采样:采样时,先按概率从高到低排序,从累加概率不超过P的范围内选择