nlp第九节——文本生成任务

一、seq2seq任务

特点:输入输出均为不定长的序列
自回归语言模型:

由前面一个字预测下一个字的任务


encoder-decoder结构:

Encoder-Decoder结构是一种基于神经网络完成seq2seq任务的常用方案

Encoder将输入转化为向量或矩阵,其中包含了输入中的信息

Decoder利用这些信息输出目标值

在这里,encoder的output和decoder每一个时间层的output拼接,用一个线性层和softmax激活函数计算权重(attention机制),再把权重张量和encoder的output点乘,把这个结果和decoder这个时间层的output拼接,再过一层gru和线性层得到下一个字的概率分布。

attention思想:

从decoder的query和encoder的key结合计算出权重(判断文本的重点),再作用在value上

soft attention:

hard attention:

teacher forcing:在预测下一个字时用输入decoder的正确的字来预测,这样做的问题是在预测时如果一个字错,后面会出现连环反应(就像在平时老师经常把正确答案给学生,在考试时学生答题效果不好);如果用非teacher forcing,会出现在训练模型时,一个字错导致后面出现连环反应。

二、transformer

在encoder-decoder交互attention阶段,q矩阵由decoder提供,与encoder的output里的key计算出attention矩阵,然后作用在encoder提供的value矩阵上,再过残差机制曾和LN层(使模型更稳定,防止梯度爆炸和梯度消失)
mask attention:

将输入decoder的文本做一次attention,对输出的矩阵进行mask(因为预测的过程中预测下一个字的过程中我们看不到下一个字,所以前一个字对下一个字没有attention)

通过mask控制训练方式:

三、采样策略

beamsearch在前文已经介绍过

temperature sample是基于对softmax的改进采样:

当T越大时,不同样本间的概率差值会减小

top-K采样:从概率最高的K个样本中采样

top-P采样:采样时,先按概率从高到低排序,从累加概率不超过P的范围内选择

相关推荐
格林威1 分钟前
工业检测机器视觉为啥非用工业相机?普通相机差在哪?
人工智能·数码相机·yolo·计算机视觉·视觉检测·相机
索迪迈科技6 分钟前
深度解析:从DeepSeek V3.1到K2 Think的“专才”模型架构
人工智能·ai·语言模型
工藤学编程7 分钟前
零基础学AI大模型之从0到1调用大模型API
人工智能
先做个垃圾出来………11 分钟前
Dify开源AI框架介绍
人工智能·开源
带娃的IT创业者15 分钟前
《AI大模型应知应会100篇》第68篇:移动应用中的大模型功能开发 —— 用 React Native 打造你的语音笔记摘要 App
人工智能·笔记·react native
skywalk816324 分钟前
copyparty 是一款使用单个 Python 文件实现的内网文件共享工具,具有跨平台、低资源占用等特点,适合需要本地化文件管理的场景
开发语言·python
Godspeed Zhao24 分钟前
自动驾驶中的传感器技术42——Radar(3)
人工智能·机器学习·自动驾驶
Godspeed Zhao26 分钟前
自动驾驶中的传感器技术41——Radar(2)
人工智能·机器学习·自动驾驶
BYSJMG29 分钟前
计算机毕设选题:基于Python+MySQL校园美食推荐系统【源码+文档+调试】
大数据·开发语言·python·mysql·django·课程设计·美食
非门由也2 小时前
《sklearn机器学习——数据预处理》类别特征编码
人工智能·机器学习·sklearn