nlp第九节——文本生成任务

一、seq2seq任务

特点:输入输出均为不定长的序列
自回归语言模型:

由前面一个字预测下一个字的任务


encoder-decoder结构:

Encoder-Decoder结构是一种基于神经网络完成seq2seq任务的常用方案

Encoder将输入转化为向量或矩阵,其中包含了输入中的信息

Decoder利用这些信息输出目标值

在这里,encoder的output和decoder每一个时间层的output拼接,用一个线性层和softmax激活函数计算权重(attention机制),再把权重张量和encoder的output点乘,把这个结果和decoder这个时间层的output拼接,再过一层gru和线性层得到下一个字的概率分布。

attention思想:

从decoder的query和encoder的key结合计算出权重(判断文本的重点),再作用在value上

soft attention:

hard attention:

teacher forcing:在预测下一个字时用输入decoder的正确的字来预测,这样做的问题是在预测时如果一个字错,后面会出现连环反应(就像在平时老师经常把正确答案给学生,在考试时学生答题效果不好);如果用非teacher forcing,会出现在训练模型时,一个字错导致后面出现连环反应。

二、transformer

在encoder-decoder交互attention阶段,q矩阵由decoder提供,与encoder的output里的key计算出attention矩阵,然后作用在encoder提供的value矩阵上,再过残差机制曾和LN层(使模型更稳定,防止梯度爆炸和梯度消失)
mask attention:

将输入decoder的文本做一次attention,对输出的矩阵进行mask(因为预测的过程中预测下一个字的过程中我们看不到下一个字,所以前一个字对下一个字没有attention)

通过mask控制训练方式:

三、采样策略

beamsearch在前文已经介绍过

temperature sample是基于对softmax的改进采样:

当T越大时,不同样本间的概率差值会减小

top-K采样:从概率最高的K个样本中采样

top-P采样:采样时,先按概率从高到低排序,从累加概率不超过P的范围内选择

相关推荐
Hacker_Oldv12 分钟前
Python 爬虫与网络安全有什么关系
爬虫·python·web安全
深蓝海拓18 分钟前
PySide(PyQT)重新定义contextMenuEvent()实现鼠标右键弹出菜单
开发语言·python·pyqt
车载诊断技术42 分钟前
人工智能AI在汽车设计领域的应用探索
数据库·人工智能·网络协议·架构·汽车·是诊断功能配置的核心
AuGuSt_812 小时前
【深度学习】Hopfield网络:模拟联想记忆
人工智能·深度学习
jndingxin2 小时前
OpenCV计算摄影学(6)高动态范围成像(HDR imaging)
人工智能·opencv·计算机视觉
数据攻城小狮子2 小时前
深入剖析 OpenCV:全面掌握基础操作、图像处理算法与特征匹配
图像处理·python·opencv·算法·计算机视觉
Sol-itude2 小时前
【文献阅读】Collective Decision for Open Set Recognition
论文阅读·人工智能·机器学习·支持向量机
ONE_PUNCH_Ge2 小时前
Python 爬虫 – BeautifulSoup
python
L_cl3 小时前
【Python 数据结构 1.零基础复习】
数据结构·python
Monkey_Jun3 小时前
《Python百练成仙》31-40章(不定时更新)
开发语言·python