大模型学习笔记------Llama 3模型架构简介

大模型学习笔记------Llama 3模型架构

LLaMA(Large Language Model Meta AI)系列模型是Meta发布并开源,分别在2023年2月、2023年7月和2024年4月发布了经历了LLaMA 1、LLaMA 2和LLaMA 3模型。本文只讲相对比较成熟、性能最优的LLaMA 3模型的架构,LLaMA 3模型主要是两个版本,分别是8B和70B。

1、整体网络结构

Llama 3模型基于标准的Transformer架构进行了多项改进,包括更高的效率和更好的性能。两个架构的对比如下图所示:

从上图整体可以看出,Llama 3模型实质上去掉了Transformer部分的编码部分,是Transformer解码部分的改进版本,即Transformer Decoder-Only,采用仅解码器架构,专注于生成式任务(文本续写、对话等)。

2、主要创新点

Llama 3模型具体改进如下所示:

  • 使用RMS Norm代替了常用的Layer Norm,计算量减少 20% 且效果持平,加速训练;
  • 激活函数由SwiGLU代替ReLU或是GELU,增强非线性表达能力。;
  • 位置编码由原来的正弦-余弦绝对位置编码或是相对位置编码修改为RoPE(Rotary Position Embedding)编码;
  • 在70B模型中,采用 GQA 替代传统 MHA(Multi-Head Attention),将查询头分组共享键/值头,显著降低推理显存占用(约 30%),同时保持生成质量;在8B模型中,依然采用MHA结构。

3、其他关键改进点

Llama 3模型除了以上改进点外,还有一些小的改进点对整个模型的鲁棒性和泛化能力的提高也有至关重要的作用,具体如下:

  • Flash Attention V2 集成:通过硬件感知的 IO 优化,提升训练效率,70B 模型训练速度较前代提升 40%;
  • 前馈网络(FFN)扩展:增加隐藏层维度倍增,如70B模型的FFN中间层维度达到了28K,参数占比超过了70%;
  • 15T Tokens 语料:涵盖 30+ 种语言,代码数据占比提升至 10%,强化推理能力。数据清洗采用多级过滤(启发式规则 + 模型打分 + 人工审核);
  • Tokenizer 升级:词表扩展至 128K(前代 32K),支持更细粒度分词,降低序列长度 20%。通过 BPE 算法 联合训练多语言分词,减少低资源语言分词错误;

LLaMA 3 通过 架构深挖(更宽更深的网络)、注意力机制创新(GQA)、长上下文优化(RoPE 增强)和 训练效率突破(Flash Attention),在保持推理效率的同时实现 SOTA 性能。70B 版本在 MMLU、GSM8K 等基准测试中超越 GPT-3.5,接近 GPT-4 Turbo 水平,标志着开源模型步入顶尖行列。

相关推荐
神奇的代码在哪里13 小时前
基于【讯飞星火 Spark Lite】轻量级大语言模型的【PySide6应用】开发与实践
人工智能·大语言模型·pyside6·讯飞星火spark·spark lite
CoderJia程序员甲15 小时前
GitHub 热榜项目 - 日榜(2025-10-04)
ai·开源·大模型·github·ai教程
HealthScience17 小时前
怎么科研绘图?怎么批量搜索高质量文献?Nature, Science, Cell
大模型
程序员鱼皮2 天前
Claude 封杀中国后,我终于找到了平替!
计算机·ai·程序员·大模型·互联网
relis2 天前
llama.cpp RMSNorm CUDA 优化分析报告
算法·llama
云雾J视界2 天前
开源革命下的研发突围:Meta Llama系列模型的知识整合实践与启示
meta·开源·llama·知识管理·知识整合·知识迭代·知识共享
山顶夕景2 天前
【MLLM】Qwen3-Omni全模态模型源码解读
大模型·llm·多模态·mllm
阿福Chris2 天前
Dify本地初始化后安装模型供应商瞬间失败控制台报错401
大模型·llm·dify·大模型工具
珊珊而川2 天前
pass@1是什么意思
大模型
丁学文武2 天前
大模型原理与实践:第三章-预训练语言模型详解_第2部分-Encoder-Decoder-T5
人工智能·语言模型·自然语言处理·大模型·t5·encoder-decoder