YOLOv8 自定义目标检测

一、引言

YOLOv8 不仅支持预训练模型的推理,还允许用户将其应用于自定义对象检测。本文将详细介绍如何使用 YOLOv8 训练一个新的模型,并在自定义数据集上进行对象检测。

二、数据集准备

1. 数据集格式

YOLOv8 支持多种数据集格式,包括 COCO 和 VOC 等。实际上,我们可以将自己的数据集统一到 YOLO 格式,自定义数据集可以使用的范围更加广泛,同样需要保证数据集的图片数量和质量,泛化能力才更强。它的结构如下:

python 复制代码
datasets/custom_training/
├── data/
│   ├── train/
│   │   ├── images/
│   │   └── labels/
│   └── valid/
│       ├── images/
│       └── labels/
└── dataset.yaml

2. dataset.yaml 文件配置

python 复制代码
path: datasets/custom_training  # 根目录
train: data/train  # 训练数据目录
val: data/valid  # 测试数据目录
nc: 1  # 目标类别数量
names: ['custom_object']  # 目标类别名称

三、模型训练

1. 训练参数详解

  • task: 推理任务类型,如 detect(目标检测)、segment(分割)、classify(分类)
  • mode: YOLO 模式,如 train(训练)、val(校验)、predict(推理)、export(导出)
  • model: 模型文件路径
  • data: 数据集配置文件
  • epochs: 训练轮数
  • batch: 批量大小
  • imgsz: 输入图像尺寸
  • save: 是否保存训练结果
  • device: 使用的设备,如 cudacpu

2. 训练命令

bash 复制代码
yolo task=detect mode=train model=yolov8n.pt epochs=100 batch=16 data=dataset.yaml

四、模型推理

1. 推理命令

bash 复制代码
yolo predict model=custom_best.pt source=test_image.jpg save=True

2. 推理结果显示

模型在推理过程中将在给定的图像上选框出目标,并添加标注,测试结果如下:

五、模型优化

为了达到最佳效果,可以采用如下方法:

1. 调整训练参数

试试不同的 batch_sizeimgszlr(学习率)等,规模不同配置对模型结果的影响。

2. 增加数据扩展

使用图像模拟技术,如旋转、缩放、位移等,增加数据集的多样性,提升模型对于不同场景的适应能力。

3. 采用更高级模型

根据任务需求,可考虑使用 yolov8m.ptyolov8l.ptyolov8x.pt 等更高级模型,以提升出为效果。

六、总结

通过本文的介绍,读者可以了解如何使用 YOLOv8 训练自定义对象检测模型。YOLOv8 具备高效性和出色的出为结果,是目标检测领域的最佳选择之一。

相关推荐
Coding茶水间几秒前
基于深度学习的水果检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·机器学习·计算机视觉
檐下翻书1733 分钟前
算法透明度审核:AI 决策的 “黑箱” 如何被打开?
人工智能
undsky_5 分钟前
【RuoYi-SpringBoot3-Pro】:接入 AI 对话能力
人工智能·spring boot·后端·ai·ruoyi
网易伏羲16 分钟前
网易伏羲受邀出席2025具身智能人形机器人年度盛会,并荣获“偃师·场景应用灵智奖
人工智能·群体智能·具身智能·游戏ai·网易伏羲·网易灵动·网易有灵智能体
搬砖者(视觉算法工程师)20 分钟前
什么是无监督学习?理解人工智能中无监督学习的机制、各类算法的类型与应用
人工智能
西格电力科技26 分钟前
面向工业用户的绿电直连架构适配技术:高可靠与高弹性的双重设计
大数据·服务器·人工智能·架构·能源
TextIn智能文档云平台30 分钟前
图片转文字后怎么输入大模型处理
前端·人工智能·python
Hy行者勇哥30 分钟前
从零搭建小智 AI 音箱 MCP 开发环境:自定义智能家居控制技能实战指南
人工智能·嵌入式硬件·硬件工程·智能家居
leaf_leaves_leaf30 分钟前
强化学习奖励曲线
人工智能
数据的世界0131 分钟前
重构智慧书-第18条:实力与实干
人工智能