机器学习数学基础:42.AMOS 结构方程模型(SEM)分析的系统流程

该流程图完整呈现了 AMOS 结构方程模型(SEM)分析的系统流程,具体步骤及内涵如下:

1. 模型设定

基于理论基础或研究假设,构建结构方程模型的初始框架,明确潜变量与显变量的关系、测量模型(因子结构)及结构模型(变量间路径),是后续分析的基础。

2. 模型识别

通过统计方法检验模型是否具备可识别性,即判断模型参数是否存在唯一解。若模型不可识别(如自由度不足),需调整模型设定(如减少参数、简化结构),直至满足识别条件。

3. 选择测量工具、收集资料

确定数据收集工具(如量表、问卷、实验仪器等),确保测量工具信效度达标;随后开展数据收集,获取研究所需样本数据,为模型分析提供实证支持。

4. 模型估计

将收集的数据导入 AMOS,运用统计估计方法(如极大似然估计)计算模型参数(路径系数、方差、协方差等),生成初始模型的估计结果。

5. 模型评估

通过拟合指标(如 RMSEA、CFI、TLI、χ²/df 等)评估模型与数据的拟合程度:

  • 拟合良好:进入结果解读环节;
  • 拟合不佳:需进行模型修正,分析修正指标(如 MI 值),寻找模型调整方向。

6. 模型修正

根据评估结果,对拟合不佳的模型进行调整(如添加路径、修正测量模型),修正后重新回到"模型估计"环节,迭代分析直至模型拟合达标。

7. 解读估计结果

深入分析模型参数估计值,包括路径系数的显著性(判断变量间关系是否成立)、因子载荷(衡量显变量对潜变量的解释力)、残差方差等,从理论和实践层面解释变量关系的意义。

8. 结果(论)报告

系统整理模型拟合指标、参数估计结果、假设检验结论等,以学术规范撰写研究报告,呈现研究发现与理论贡献。

9. 模型交叉验证

通过交叉验证(如拆分样本、更换数据子集)检验模型的稳健性,确保模型在不同数据样本中仍保持良好拟合与解释力,验证研究结果的可靠性与泛化能力。

相关推荐
catchadmin2 小时前
PHP 快速集成 ChatGPT 用 AI 让你的应用更聪明
人工智能·后端·chatgpt·php
机器学习之心5 小时前
多目标鲸鱼优化算法(NSWOA),含46种测试函数和9个评价指标,MATLAB实现
算法·matlab·多目标鲸鱼优化算法·46种测试函数·9个评价指标
编程武士5 小时前
从50ms到30ms:YOLOv10部署中图像预处理的性能优化实践
人工智能·python·yolo·性能优化
max5006006 小时前
基于Meta Llama的二语习得学习者行为预测计算模型
人工智能·算法·机器学习·分类·数据挖掘·llama
月疯7 小时前
OPENCV摄像头读取视频
人工智能·opencv·音视频
极客天成ScaleFlash7 小时前
极客天成让统一存储从云原生‘进化’到 AI 原生: 不是版本升级,而是基因重组
人工智能·云原生
王哥儿聊AI7 小时前
Lynx:新一代个性化视频生成模型,单图即可生成视频,重新定义身份一致性与视觉质量
人工智能·算法·安全·机器学习·音视频·软件工程
_pinnacle_7 小时前
打开神经网络的黑箱(三) 卷积神经网络(CNN)的模型逻辑
人工智能·神经网络·cnn·黑箱·卷积网络
Ada's7 小时前
深度学习在自动驾驶上应用(二)
人工智能·深度学习·自动驾驶
张较瘦_8 小时前
[论文阅读] 人工智能 + 软件工程 | 从“人工扒日志”到“AI自动诊断”:LogCoT框架的3大核心创新
论文阅读·人工智能·软件工程