AI编程: 一个案例对比CPU和GPU在深度学习方面的性能差异

背景

字节跳动正式发布中国首个AI原生集成开发环境工具(AI IDE)------AI编程工具Trae国内版。 该工具模型搭载doubao-1.5-pro,支持切换满血版DeepSeek R1&V3, 可以帮助各阶段开发者与AI流畅协作,更快、更高质量地完成编程工作,提升开发效率。

安装试用后,效果确实不错,无论是编程还是开发环境的自动化构建,都能实现较高程度的自动化。

本文演示了一个实际编程案例,在一台配备Intel CPU和集成显卡的个人PC上,对比GPU/CPU在一些耗时运算方面的性能差异,并通过图表展示对比结果。涉及基本的神经网络模型 编程,如python环境配置、矩阵运算、前向传播、反向传播,基于Intel集成显卡GPU的开发环境配置等。

运行环境

builder模式实施任务

向Trae描述任务需求

本机是 i7-1260P + Iris Xe + 16G内存, 请编写程序,对比一下使用CPU和GPU进行某些深度学习运算的性能差异。

只需根几秒的时间, trae就已经完成了代码编写 gpu_cpu_benchmark.py,并输出了python环境依赖库清单requirements.txt

生成依赖并自动安装

requirements.txt如下图所示,当然,依赖文件并不是一步到位 直接生成的。而是经历了多个版本的叠代。

比如 ,一开始trae推荐的是以下版本的torch

复制代码
pip install torch==2.3.0 torchvision==0.18.0 intel-extension-for-pytorch==2.3.0 memory-profiler==0.61

但是因版本匹配问题失败,因此, trace又调整了软件包版本。

包括在使用intel集成显卡的时候与Nvidia GPU编程不同, trae提示:

检测到PyTorch安装需要额外源地址,现在添加Intel官方源重新安装依赖。

复制代码
pip install -r requirements.txt --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/

评测程序运行

测评程序分别使用cpu、XPU(即intel的集成显卡)进行矩阵运算、前向传播、反向传播等方面的运算。

GPU满负荷工作:

评测结果

评测程序最终自动输出了评测结果,如下图所示。结果表明, 这台集成显卡的GPU性能实在一般, 只有矩阵运算比CPU强,其他方面如前向传播、反向传播和内存使用,都比CPU要弱。后续有机会换个显卡再试。

这台集成显卡的GPU性能实在一般, 只有矩阵运算比CPU强,其他方面如前向传播、反向传播和内存使用,都比CPU要弱。后续有机会换个显卡再试。

相关推荐
云惠科技(SEO)2 分钟前
泛目录站群技术架构演进观察:2025年PHP+Java混合方案实战笔记
java·人工智能·搜索引擎
Jamence8 分钟前
多模态大语言模型arxiv论文略读(二十四)
人工智能·计算机视觉·语言模型
QQ_77813297418 分钟前
从文本到视频:基于扩散模型的AI生成系统全解析(附PyTorch实现)
人工智能·pytorch·python
ljd21032312444 分钟前
opencv函数展示2
人工智能·opencv·计算机视觉
戈云 11061 小时前
Spark-SQL
人工智能·spark
明明真系叻1 小时前
2025.4.20机器学习笔记:文献阅读
人工智能·笔记·机器学习
学术小八1 小时前
2025年机电一体化、机器人与人工智能国际学术会议(MRAI 2025)
人工智能·机器人·机电
爱的叹息2 小时前
关于 雷达(Radar) 的详细解析,涵盖其定义、工作原理、分类、关键技术、应用场景、挑战及未来趋势,结合实例帮助理解其核心概念
人工智能·分类·数据挖掘
许泽宇的技术分享2 小时前
.NET MCP 文档
人工智能·.net
anscos2 小时前
Actran声源识别方法连载(二):薄膜模态表面振动识别
人工智能·算法·仿真软件·actran