AI编程: 一个案例对比CPU和GPU在深度学习方面的性能差异

背景

字节跳动正式发布中国首个AI原生集成开发环境工具(AI IDE)------AI编程工具Trae国内版。 该工具模型搭载doubao-1.5-pro,支持切换满血版DeepSeek R1&V3, 可以帮助各阶段开发者与AI流畅协作,更快、更高质量地完成编程工作,提升开发效率。

安装试用后,效果确实不错,无论是编程还是开发环境的自动化构建,都能实现较高程度的自动化。

本文演示了一个实际编程案例,在一台配备Intel CPU和集成显卡的个人PC上,对比GPU/CPU在一些耗时运算方面的性能差异,并通过图表展示对比结果。涉及基本的神经网络模型 编程,如python环境配置、矩阵运算、前向传播、反向传播,基于Intel集成显卡GPU的开发环境配置等。

运行环境

builder模式实施任务

向Trae描述任务需求

本机是 i7-1260P + Iris Xe + 16G内存, 请编写程序,对比一下使用CPU和GPU进行某些深度学习运算的性能差异。

只需根几秒的时间, trae就已经完成了代码编写 gpu_cpu_benchmark.py,并输出了python环境依赖库清单requirements.txt

生成依赖并自动安装

requirements.txt如下图所示,当然,依赖文件并不是一步到位 直接生成的。而是经历了多个版本的叠代。

比如 ,一开始trae推荐的是以下版本的torch

pip install torch==2.3.0 torchvision==0.18.0 intel-extension-for-pytorch==2.3.0 memory-profiler==0.61

但是因版本匹配问题失败,因此, trace又调整了软件包版本。

包括在使用intel集成显卡的时候与Nvidia GPU编程不同, trae提示:

检测到PyTorch安装需要额外源地址,现在添加Intel官方源重新安装依赖。

pip install -r requirements.txt --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/

评测程序运行

测评程序分别使用cpu、XPU(即intel的集成显卡)进行矩阵运算、前向传播、反向传播等方面的运算。

GPU满负荷工作:

评测结果

评测程序最终自动输出了评测结果,如下图所示。结果表明, 这台集成显卡的GPU性能实在一般, 只有矩阵运算比CPU强,其他方面如前向传播、反向传播和内存使用,都比CPU要弱。后续有机会换个显卡再试。

这台集成显卡的GPU性能实在一般, 只有矩阵运算比CPU强,其他方面如前向传播、反向传播和内存使用,都比CPU要弱。后续有机会换个显卡再试。

相关推荐
梦丶晓羽3 分钟前
自然语言处理:主题模型
人工智能·python·自然语言处理·lda·主题模型
_zwy7 分钟前
通义万相2.1 图生视频:为AI绘梦插上翅膀,开启ALGC算力领域新纪元
人工智能·深度学习·计算机视觉·ai作画
数字供应链安全产品选型17 分钟前
新一代开源数字供应链安全审查与治理平台:悬镜源鉴SCA
网络·人工智能·安全·开源·开源软件
虾球xz19 分钟前
游戏引擎学习第149天
人工智能·学习·游戏引擎
jinan88622 分钟前
图纸的安全怎么管理?
大数据·图像处理·人工智能·安全
没学上了22 分钟前
yolov8自定义实例分割
人工智能·深度学习·opencv·yolo·逻辑回归
晓风伴月33 分钟前
Trae AI 辅助修复uniapp 微信小程序的Bug
uni-app·bug·trae
子洋39 分钟前
Chroma+LangChain:让AI联网回答更精准
前端·人工智能·后端
Gazer_S2 小时前
【基于 SSE 协议与 EventSource 实现 AI 对话的流式交互】
前端·javascript·人工智能·交互
德育处主任2 小时前
『ComfyUI』初识工作流
人工智能·stable diffusion·aigc