AI编程: 一个案例对比CPU和GPU在深度学习方面的性能差异

背景

字节跳动正式发布中国首个AI原生集成开发环境工具(AI IDE)------AI编程工具Trae国内版。 该工具模型搭载doubao-1.5-pro,支持切换满血版DeepSeek R1&V3, 可以帮助各阶段开发者与AI流畅协作,更快、更高质量地完成编程工作,提升开发效率。

安装试用后,效果确实不错,无论是编程还是开发环境的自动化构建,都能实现较高程度的自动化。

本文演示了一个实际编程案例,在一台配备Intel CPU和集成显卡的个人PC上,对比GPU/CPU在一些耗时运算方面的性能差异,并通过图表展示对比结果。涉及基本的神经网络模型 编程,如python环境配置、矩阵运算、前向传播、反向传播,基于Intel集成显卡GPU的开发环境配置等。

运行环境

builder模式实施任务

向Trae描述任务需求

本机是 i7-1260P + Iris Xe + 16G内存, 请编写程序,对比一下使用CPU和GPU进行某些深度学习运算的性能差异。

只需根几秒的时间, trae就已经完成了代码编写 gpu_cpu_benchmark.py,并输出了python环境依赖库清单requirements.txt

生成依赖并自动安装

requirements.txt如下图所示,当然,依赖文件并不是一步到位 直接生成的。而是经历了多个版本的叠代。

比如 ,一开始trae推荐的是以下版本的torch

复制代码
pip install torch==2.3.0 torchvision==0.18.0 intel-extension-for-pytorch==2.3.0 memory-profiler==0.61

但是因版本匹配问题失败,因此, trace又调整了软件包版本。

包括在使用intel集成显卡的时候与Nvidia GPU编程不同, trae提示:

检测到PyTorch安装需要额外源地址,现在添加Intel官方源重新安装依赖。

复制代码
pip install -r requirements.txt --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/

评测程序运行

测评程序分别使用cpu、XPU(即intel的集成显卡)进行矩阵运算、前向传播、反向传播等方面的运算。

GPU满负荷工作:

评测结果

评测程序最终自动输出了评测结果,如下图所示。结果表明, 这台集成显卡的GPU性能实在一般, 只有矩阵运算比CPU强,其他方面如前向传播、反向传播和内存使用,都比CPU要弱。后续有机会换个显卡再试。

这台集成显卡的GPU性能实在一般, 只有矩阵运算比CPU强,其他方面如前向传播、反向传播和内存使用,都比CPU要弱。后续有机会换个显卡再试。

相关推荐
那个村的李富贵4 小时前
光影魔术师:CANN加速实时图像风格迁移,让每张照片秒变大师画作
人工智能·aigc·cann
AskHarries5 小时前
Skills.lc 是什么?为什么我会做(用)这个站
ai编程
沈二到不行5 小时前
【22-26】蜉蝣一日、入樊笼尔
程序员·ai编程·全栈
腾讯云开发者5 小时前
“痛点”到“通点”!一份让 AI 真正落地产生真金白银的实战指南
人工智能
CareyWYR5 小时前
每周AI论文速递(260202-260206)
人工智能
hopsky6 小时前
大模型生成PPT的技术原理
人工智能
禁默7 小时前
打通 AI 与信号处理的“任督二脉”:Ascend SIP Boost 加速库深度实战
人工智能·信号处理·cann
心疼你的一切7 小时前
昇腾CANN实战落地:从智慧城市到AIGC,解锁五大行业AI应用的算力密码
数据仓库·人工智能·深度学习·aigc·智慧城市·cann
AI绘画哇哒哒7 小时前
【干货收藏】深度解析AI Agent框架:设计原理+主流选型+项目实操,一站式学习指南
人工智能·学习·ai·程序员·大模型·产品经理·转行
数据分析能量站7 小时前
Clawdbot(现名Moltbot)-现状分析
人工智能