【最长递增子序列】【LeetCode算法】【c++】【动态规划】

文章目录

LeetCode 300题 最长递增子序列

题目要求

给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。

子序列 是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列。

示例 1:

复制代码
输入:nums = [10,9,2,5,3,7,101,18]
输出:4
解释:最长递增子序列是 [2,3,7,101],因此长度为 4 。

示例 2:

复制代码
输入:nums = [0,1,0,3,2,3]
输出:4

示例 3:

复制代码
输入:nums = [7,7,7,7,7,7,7]
输出:1

提示:

  • 1 <= nums.length <= 2500
  • -104 <= nums[i] <= 104
思路

首先这道题目用到了动态规划的思想,是经典的动态规划题目

我们可以选择遍历数组的同时,用dp数组来记录每个数字包括自己在内递增序列中数字的个数,假如序列为【1,3,2,4】,那么dp数组中应该是【1,2,2,3】,下面通过图示进一步解释。

图示

下面我画出了几步帮助理解

用到了两层for循环,双指针,i指针一直进行++操作,j指针每次从第一个元素开始和a[i]进行比较,如果a[i]大于a[j],那么dp[i]进行更新,最后找出dp数组中最大值即可。

代码
c 复制代码
// 最长上升子序列
#include <iostream>
using namespace std;

const int N = 1000;
int a[N], dp[N];

int main()
{
    int n;
    cin >> n;
    for (int i = 0; i < n; i++)
        cin >> a[i];
    int ans = 0;
    for (int i = 0; i < n; i++)
    {
        dp[i] = 1;
        for (int j = 0; j < i; j++)
        {
            if (a[i] > a[j])
            {
                dp[i] = max(dp[i], dp[j] + 1);
            }
        }

        ans = max(ans, dp[i]);
    }
    cout << ans << endl;
    system("pause");
    return 0;
}
测试结果
如果有误还请各位大佬指正
相关推荐
天若有情67313 分钟前
【c++】手撸C++ Promise:从零实现通用异步回调组件,支持链式调用+异常安全
开发语言·前端·javascript·c++·promise
高山上有一只小老虎22 分钟前
构造A+B
java·算法
学困昇24 分钟前
C++中的异常
android·java·c++
木头左25 分钟前
缺失值插补策略比较线性回归vs.相邻填充在LSTM输入层的性能差异分析
算法·线性回归·lstm
sin_hielo43 分钟前
leetcode 2435
数据结构·算法·leetcode
合作小小程序员小小店1 小时前
桌面安全开发,桌面二进制%恶意行为拦截查杀%系统安全开发3.0,基于c/c++语言,mfc,win32,ring3,dll,hook,inject,无数据库
c语言·开发语言·c++·安全·系统安全
Codeking__1 小时前
C++ 11 atomic 原子性操作
开发语言·c++
crescent_悦1 小时前
PTA L1-020 帅到没朋友 C++
数据结构·c++·算法
鳄鱼儿1 小时前
密码算法的OID查阅
算法
卡提西亚2 小时前
C++笔记-34-map/multimap容器
开发语言·c++·笔记