【最长递增子序列】【LeetCode算法】【c++】【动态规划】

文章目录

LeetCode 300题 最长递增子序列

题目要求

给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。

子序列 是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列。

示例 1:

复制代码
输入:nums = [10,9,2,5,3,7,101,18]
输出:4
解释:最长递增子序列是 [2,3,7,101],因此长度为 4 。

示例 2:

复制代码
输入:nums = [0,1,0,3,2,3]
输出:4

示例 3:

复制代码
输入:nums = [7,7,7,7,7,7,7]
输出:1

提示:

  • 1 <= nums.length <= 2500
  • -104 <= nums[i] <= 104
思路

首先这道题目用到了动态规划的思想,是经典的动态规划题目

我们可以选择遍历数组的同时,用dp数组来记录每个数字包括自己在内递增序列中数字的个数,假如序列为【1,3,2,4】,那么dp数组中应该是【1,2,2,3】,下面通过图示进一步解释。

图示

下面我画出了几步帮助理解

用到了两层for循环,双指针,i指针一直进行++操作,j指针每次从第一个元素开始和a[i]进行比较,如果a[i]大于a[j],那么dp[i]进行更新,最后找出dp数组中最大值即可。

代码
c 复制代码
// 最长上升子序列
#include <iostream>
using namespace std;

const int N = 1000;
int a[N], dp[N];

int main()
{
    int n;
    cin >> n;
    for (int i = 0; i < n; i++)
        cin >> a[i];
    int ans = 0;
    for (int i = 0; i < n; i++)
    {
        dp[i] = 1;
        for (int j = 0; j < i; j++)
        {
            if (a[i] > a[j])
            {
                dp[i] = max(dp[i], dp[j] + 1);
            }
        }

        ans = max(ans, dp[i]);
    }
    cout << ans << endl;
    system("pause");
    return 0;
}
测试结果
如果有误还请各位大佬指正
相关推荐
在黎明的反思6 分钟前
进程通信之消息队列(IPC)
算法
老鱼说AI31 分钟前
算法基础教学第一步:数据结构
数据结构·python·算法
极地星光34 分钟前
C++链式调用设计:打造优雅流式API
服务器·网络·c++
Jing_Rainbow1 小时前
【LeetCode Hot100 刷题日记(19/100)】54. 螺旋矩阵 —— 数组、矩阵、模拟、双指针、层序遍历🌀
算法·面试·程序员
小陈要努力1 小时前
Visual Studio 开发环境配置指南
c++·opengl
程序猿本员1 小时前
5. 实现
c++
Bona Sun2 小时前
单片机手搓掌上游戏机(十五)—pico运行fc模拟器之编译环境
c语言·c++·单片机·游戏机
地平线开发者2 小时前
征程 6 | linear 高精度输出配置方式
算法·自动驾驶
小尧嵌入式2 小时前
C++基础语法总结
开发语言·c++·stm32·单片机·嵌入式硬件·算法
white-persist2 小时前
【攻防世界】reverse | IgniteMe 详细题解 WP
c语言·汇编·数据结构·c++·python·算法·网络安全