【最长递增子序列】【LeetCode算法】【c++】【动态规划】

文章目录

LeetCode 300题 最长递增子序列

题目要求

给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。

子序列 是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列。

示例 1:

复制代码
输入:nums = [10,9,2,5,3,7,101,18]
输出:4
解释:最长递增子序列是 [2,3,7,101],因此长度为 4 。

示例 2:

复制代码
输入:nums = [0,1,0,3,2,3]
输出:4

示例 3:

复制代码
输入:nums = [7,7,7,7,7,7,7]
输出:1

提示:

  • 1 <= nums.length <= 2500
  • -104 <= nums[i] <= 104
思路

首先这道题目用到了动态规划的思想,是经典的动态规划题目

我们可以选择遍历数组的同时,用dp数组来记录每个数字包括自己在内递增序列中数字的个数,假如序列为【1,3,2,4】,那么dp数组中应该是【1,2,2,3】,下面通过图示进一步解释。

图示

下面我画出了几步帮助理解

用到了两层for循环,双指针,i指针一直进行++操作,j指针每次从第一个元素开始和a[i]进行比较,如果a[i]大于a[j],那么dp[i]进行更新,最后找出dp数组中最大值即可。

代码
c 复制代码
// 最长上升子序列
#include <iostream>
using namespace std;

const int N = 1000;
int a[N], dp[N];

int main()
{
    int n;
    cin >> n;
    for (int i = 0; i < n; i++)
        cin >> a[i];
    int ans = 0;
    for (int i = 0; i < n; i++)
    {
        dp[i] = 1;
        for (int j = 0; j < i; j++)
        {
            if (a[i] > a[j])
            {
                dp[i] = max(dp[i], dp[j] + 1);
            }
        }

        ans = max(ans, dp[i]);
    }
    cout << ans << endl;
    system("pause");
    return 0;
}
测试结果
如果有误还请各位大佬指正
相关推荐
田里的水稻1 分钟前
FA_融合和滤波(FF)-联邦滤波(FKF)
人工智能·算法·数学建模·机器人·自动驾驶
橘色的喵5 分钟前
现代 C++17 相比 C 的不可替代优势
c语言·c++·现代c++·c++17
紫陌涵光14 分钟前
112. 路径总和
java·前端·算法
浅念-15 分钟前
C/C++内存管理
c语言·开发语言·c++·经验分享·笔记·学习
回敲代码的猴子24 分钟前
2月8日上机
开发语言·c++·算法
Hello eveybody1 小时前
什么是动态规划(DP)?(Python版)
python·动态规划
IT猿手1 小时前
MOEA/D(基于分解的多目标进化算法)求解46个多目标函数及一个工程应用,包含四种评价指标,MATLAB代码
开发语言·算法·matlab·多目标算法
Benny_Tang1 小时前
AtCoder Beginner Contest 445(ABC445) A-F 题解
c++·算法
sprintzer1 小时前
2.06-2.15力扣数学刷题
算法·leetcode·职场和发展
喵呜嘻嘻嘻2 小时前
Gurobi求解器参数
java·数据结构·算法