【最长递增子序列】【LeetCode算法】【c++】【动态规划】

文章目录

LeetCode 300题 最长递增子序列

题目要求

给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。

子序列 是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列。

示例 1:

复制代码
输入:nums = [10,9,2,5,3,7,101,18]
输出:4
解释:最长递增子序列是 [2,3,7,101],因此长度为 4 。

示例 2:

复制代码
输入:nums = [0,1,0,3,2,3]
输出:4

示例 3:

复制代码
输入:nums = [7,7,7,7,7,7,7]
输出:1

提示:

  • 1 <= nums.length <= 2500
  • -104 <= nums[i] <= 104
思路

首先这道题目用到了动态规划的思想,是经典的动态规划题目

我们可以选择遍历数组的同时,用dp数组来记录每个数字包括自己在内递增序列中数字的个数,假如序列为【1,3,2,4】,那么dp数组中应该是【1,2,2,3】,下面通过图示进一步解释。

图示

下面我画出了几步帮助理解

用到了两层for循环,双指针,i指针一直进行++操作,j指针每次从第一个元素开始和a[i]进行比较,如果a[i]大于a[j],那么dp[i]进行更新,最后找出dp数组中最大值即可。

代码
c 复制代码
// 最长上升子序列
#include <iostream>
using namespace std;

const int N = 1000;
int a[N], dp[N];

int main()
{
    int n;
    cin >> n;
    for (int i = 0; i < n; i++)
        cin >> a[i];
    int ans = 0;
    for (int i = 0; i < n; i++)
    {
        dp[i] = 1;
        for (int j = 0; j < i; j++)
        {
            if (a[i] > a[j])
            {
                dp[i] = max(dp[i], dp[j] + 1);
            }
        }

        ans = max(ans, dp[i]);
    }
    cout << ans << endl;
    system("pause");
    return 0;
}
测试结果
如果有误还请各位大佬指正
相关推荐
Ka1Yan几秒前
[链表] - 代码随想录 707. 设计链表
数据结构·算法·链表
scx201310041 分钟前
20260112树状数组总结
数据结构·c++·算法·树状数组
FastMoMO6 分钟前
Qwen3-VL-2B 在 RK3576 上的部署实践:RKNN + RKLLM 全流程
算法
光算科技12 分钟前
AI重写工具导致‘文本湍流’特征|如何人工消除算法识别标记
大数据·人工智能·算法
星竹晨L13 分钟前
【C++内存安全管理】智能指针的使用和原理
开发语言·c++
宵时待雨15 分钟前
数据结构(初阶)笔记归纳3:顺序表的应用
c语言·开发语言·数据结构·笔记·算法
智者知已应修善业17 分钟前
【C语言 dfs算法 十四届蓝桥杯 D飞机降落问题】2024-4-12
c语言·c++·经验分享·笔记·算法·蓝桥杯·深度优先
罗湖老棍子18 分钟前
最优乘车(travel)(信息学奥赛一本通- P1377)
算法·图论·bfs·最短路·字符串流·单向边
副露のmagic26 分钟前
更弱智的算法学习 day36
学习·算法
玖釉-31 分钟前
[Vulkan 学习之路] 09 - 显卡的流水线工厂:图形管线概览 (Graphics Pipeline)
c++·windows·图形渲染