ai应用开发代码

我将以文本分类这一常见 AI 应用为例,用 Python 和 Scikit - learn 库编写代码,实现对简单文本情感倾向的分类。代码会先准备训练数据,再训练分类模型,最后用于预测新文本情感。

from sklearn.feature_extraction.text import TfidfVectorizer​

from sklearn.svm import LinearSVC​

from sklearn.pipeline import Pipeline​

from sklearn.model_selection import train_test_split​

from sklearn.metrics import classification_report​

准备训练数据,这里以简单的情感分类为例,0代表负面,1代表正面​

data = [​

("这个产品真的很糟糕,一点都不好用", 0),​

("我非常喜欢这个产品,它帮了我大忙", 1),​

("体验太差了,不会再用", 0),​

("这是我用过最好的产品之一", 1),​

("感觉一般,没有特别之处", 0)​

]​

分离文本和标签​

texts = [text for text, label in data]​

labels = [label for text, label in data]​

划分训练集和测试集​

X_train, X_test, y_train, y_test = train_test_split(texts, labels, test_size=0.2, random_state=42)​

创建文本分类管道,包括特征提取和分类器​

pipeline = Pipeline([​

('vectorizer', TfidfVectorizer()),​

('classifier', LinearSVC())​

])​

训练模型​

pipeline.fit(X_train, y_train)​

在测试集上进行预测​

y_pred = pipeline.predict(X_test)​

输出分类报告,评估模型性能​

print(classification_report(y_test, y_pred))​

可以用训练好的模型对新文本进行预测​

new_text = "这个产品太棒了"​

prediction = pipeline.predict([new_text])​

if prediction[0] == 1:​

print(f"对于文本 '{new_text}' 的预测情感为正面")​

else:​

print(f"对于文本 '{new_text}' 的预测情感为负面")​

这段代码实现了基础的文本分类功能。若你想改变应用方向,如实现图像识别、智能问答等,或者优化现有代码,都能告诉我。

相关推荐
七月稻草人2 分钟前
CANN ops-nn:AIGC底层神经网络算力的核心优化引擎
人工智能·神经网络·aigc·cann
种时光的人2 分钟前
CANN仓库核心解读:ops-nn打造AIGC模型的神经网络算子核心支撑
人工智能·神经网络·aigc
晚霞的不甘4 分钟前
守护智能边界:CANN 的 AI 安全机制深度解析
人工智能·安全·语言模型·自然语言处理·前端框架
谢璞6 分钟前
中国AI最疯狂的一周:50亿金元肉搏,争夺未来的突围之战
人工智能
池央6 分钟前
CANN 算子生态的深度演进:稀疏计算支持与 PyPTO 范式的抽象层级
运维·人工智能·信号处理
方见华Richard7 分钟前
世毫九实验室(Shardy Lab)研究成果清单(2025版)
人工智能·经验分享·交互·原型模式·空间计算
Maynor9967 分钟前
OpenClaw 玩家必备:用 AI 自动追踪社区最新动态
java·服务器·人工智能
aini_lovee8 分钟前
MATLAB基于小波技术的图像融合实现
开发语言·人工智能·matlab
ujainu17 分钟前
CANN仓库中的AIGC多模态统一抽象工程:昇腾AI软件栈如何用一套接口驾驭图文音视
人工智能·aigc
AC赳赳老秦22 分钟前
代码生成超越 GPT-4:DeepSeek-V4 编程任务实战与 2026 开发者效率提升指南
数据库·数据仓库·人工智能·科技·rabbitmq·memcache·deepseek