每天五分钟玩转深度学习PyTorch:基于pytorch搭建LSTM和GRU模型

本文重点

前面我们学习了使用pytorch搭建RNN,本文我们学习如何使用pytorch搭建LSTM和GRU模型,我们来看一下,它们两个和LSTM和GRU有什么不同。

搭建LSTM

我们可以看到模型的搭建和RNN没什么区别,关键在于它的前向传播的返回值,out和hn和RNN表示的含义一样,多了一个cn,cn和hn的维度一样的都是[层数*方向,batch,hidden-size]

除此之外,LSTM和RNN的区别还体现在参数维度上,LSTM的参数维度是RNN的四倍,可以理解为wxh的维度为(hidden_len*4,feature_len)

out表示最上层每个时刻的输出,如果要是获取最后一个时刻可以[-1,::]

Cn表示最后一个时刻的长期状态(所有层),有两层的话,那么中间层也会获取到

hn表示最后一个时刻的隐藏状态(所有层)

搭建GRU

hidden的维度是[层数*方向,batch,hidden-size]

除此之外,GRU和RNN的区别还体现在参数维度上,GRU的参数维度是RNN的四倍,可以理解为wxh的维度为(hidden_len*4,feature_len)

相关推荐
大数据张老师4 分钟前
AI架构师的思维方式与架构设计原则
人工智能·架构师·ai架构·后端架构
AKAMAI16 分钟前
Entity Digital Sports 降低成本并快速扩展
人工智能·云计算
m0_6176636219 分钟前
Deeplizard深度学习课程(七)—— 神经网络实验
人工智能·深度学习·神经网络
笔触狂放1 小时前
【机器学习】综合实训(一)
人工智能·机器学习
智算菩萨1 小时前
国内外最新AI语言模型行情分析2025年9月最新内容
人工智能
ningmengjing_1 小时前
激活函数:神经网络的“灵魂开关”
人工智能·深度学习·神经网络
Billy_Zuo1 小时前
人工智能机器学习——逻辑回归
人工智能·机器学习·逻辑回归
东风西巷2 小时前
Balabolka:免费高效的文字转语音软件
前端·人工智能·学习·语音识别·软件需求
非门由也2 小时前
《sklearn机器学习——管道和复合估计器》联合特征(FeatureUnion)
人工智能·机器学习·sklearn
l12345sy2 小时前
Day21_【机器学习—决策树(1)—信息增益、信息增益率、基尼系数】
人工智能·决策树·机器学习·信息增益·信息增益率·基尼指数