第R3周:RNN-心脏病预测(Tensorflow实现)

  • 语言环境:Python3.8
  • 编译器:Jupyter Lab
  • 深度学习环境:
    • tensorflow==2.18.0+cuda

目录

[1. 前期准备](#1. 前期准备)

1.1设置GPU

[1.2 导入数据](#1.2 导入数据)

[1.3 检查数据](#1.3 检查数据)

[2. 数据预处理](#2. 数据预处理)

[2.1 划分训练集与测试集](#2.1 划分训练集与测试集)

[2.2 标准化](#2.2 标准化)

[3. 构建RNN模型](#3. 构建RNN模型)

[4. 编译模型](#4. 编译模型)

[5. 训练模型](#5. 训练模型)

[​6. 评估模型](#6. 评估模型)


1. 前期准备

1.1设置GPU

python 复制代码
import tensorflow   as tf

gpus = tf.config.list_physical_devices("GPU")

if gpus:
    gpu0 = gpus[0]                                        #如果有多个GPU,仅使用第0个GPU
    tf.config.experimental.set_memory_growth(gpu0, True)  #设置GPU显存用量按需使用
    tf.config.set_visible_devices([gpu0],"GPU")
    
gpus

1.2 导入数据

python 复制代码
import pandas as pd
import numpy as np

df = pd.read_csv("heart.csv")
df

1.3 检查数据

python 复制代码
# 检查是否有空值
df.isnull().sum()

2. 数据预处理

2.1 划分训练集与测试集

python 复制代码
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split

X = df.iloc[:,:-1]
y = df.iloc[:,-1]
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size = 0.1,random_state = 1)
X_train.shape,y_train.shape

2.2 标准化

python 复制代码
# 将每一列特征值标准化为正太分布,注意,标准化是针对每一列而言的
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)

X_train = X_train.reshape(X_train.shape[0],X_train.shape[1],1)
X_test = X_test.reshape(X_test.shape[0],X_test.shape[1],1)

3. 构建RNN模型

python 复制代码
import tensorflow 
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense,LSTM,SimpleRNN

model = Sequential()
model.add(SimpleRNN(200,input_shape=(13,1),activation='relu'))
model.add(Dense(100,activation='relu'))
model.add(Dense(1,activation='sigmoid'))
model.summary()

4. 编译模型

python 复制代码
opt = tf.keras.optimizers.Adam(learning_rate=1e-4)

model.compile(loss = 'binary_crossentropy',
             optimizer=opt,
             metrics="accuracy")

5. 训练模型

python 复制代码
epochs = 100

history = model.fit(X_train,
                    y_train,
                   epochs=epochs,
                   batch_size=128,
                   validation_data=(X_test,y_test),
                   verbose=1)

6. 评估模型

python 复制代码
import matplotlib.pyplot as plt

acc = history.history['accuracy']
val_acc = history.history['val_accuracy']

loss = history.history['loss']
val_loss = history.history['val_loss']

epochs_range = range(epochs)

plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, acc, label='Training Accuracy')
plt.plot(epochs_range, val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss, label='Training Loss')
plt.plot(epochs_range, val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()
python 复制代码
scores = model.evaluate(X_test,y_test,verbose=0)
print("%s: %.2f%%" % (model.metrics_names[1],scores[1]*100))

总结:

从上图结果中我们可以看出:

左图:训练与验证准确率

训练集的准确率(蓝色线):随着训练次数增加,呈现出平稳上升趋势,最终接近0.92左右,说明模型在训练数据上的拟合效果逐渐变好。

验证集的准确率(橙色线):一开始随着训练迭代次数增加,验证准确率也在提升,但在约25次迭代后,准确率趋于平稳,甚至有一些波动,特别在60次之后,表现出明显的下降和上升不稳定现象。

右图:训练与验证损失

训练集损失(蓝色线):损失随着迭代次数逐渐下降,这表明模型在训练集上不断优化,误差减少。

验证集损失(橙色线):最开始也在下降,但在大约20次迭代后开始变得平缓,甚至损失值开始回弹。这与验证集准确率下降的现象一致,暗示模型在验证集上的表现没有持续改进。

相关推荐
冰西瓜6003 小时前
从项目入手机器学习——鸢尾花分类
人工智能·机器学习·分类·数据挖掘
爱思德学术3 小时前
中国计算机学会(CCF)推荐学术会议-C(人工智能):IJCNN 2026
人工智能·神经网络·机器学习
偶信科技4 小时前
国产极细拖曳线列阵:16mm“水下之耳”如何撬动智慧海洋新蓝海?
人工智能·科技·偶信科技·海洋设备·极细拖曳线列阵
Java后端的Ai之路4 小时前
【神经网络基础】-神经网络学习全过程(大白话版)
人工智能·深度学习·神经网络·学习
庚昀◟4 小时前
用AI来“造AI”!Nexent部署本地智能体的沉浸式体验
人工智能·ai·nlp·持续部署
喜欢吃豆5 小时前
OpenAI Realtime API 深度技术架构与实现指南——如何实现AI实时通话
人工智能·语言模型·架构·大模型
数据分析能量站5 小时前
AI如何重塑个人生产力、组织架构和经济模式
人工智能
wscats6 小时前
Markdown 编辑器技术调研
前端·人工智能·markdown
AI科技星6 小时前
张祥前统一场论宇宙大统一方程的求导验证
服务器·人工智能·科技·线性代数·算法·生活
GIS数据转换器6 小时前
基于知识图谱的个性化旅游规划平台
人工智能·3d·无人机·知识图谱·旅游