【工具】isolateR桑格测序数据的自动化处理、分类分析以及微生物菌株库的生成R包

文章目录

    • 介绍
    • 代码
    • 案例
      • [Step 1: isoQC - Automated quality trimming of sequences](#Step 1: isoQC - Automated quality trimming of sequences)
      • [Step 2: isoTAX - Assign taxonomy](#Step 2: isoTAX - Assign taxonomy)
      • [Step 3: isoLIB - Generate strain library](#Step 3: isoLIB - Generate strain library)
    • 参考

介绍

对分类标记基因(如16S/18S/ITS/rpoB/cpn60)进行桑格测序是鉴定包括细菌、古菌和真菌在内的广泛微生物的领先方法。然而,序列数据的手动处理以及传统BLAST搜索的局限性阻碍了菌株库的高效生成,而菌株库对于编目微生物多样性和发现新物种至关重要。

isolateR通过实施标准化且可扩展的三步流程来应对这些挑战,包括:(1)桑格序列文件的自动化批量处理,(2)通过与类型菌株数据库进行全局比对进行分类鉴定,符合最新的国际命名标准,(3)简单创建菌株库并处理克隆分离株,能够设置可定制的序列去重复阈值,并将多次测序运行的数据合并到一个库中。该工具的用户友好设计还具有交互式HTML输出,简化了数据探索和分析。此外,在两个全面的人类肠道基因组目录(IMGG和哈扎狩猎采集人群)上进行的计算机模拟基准测试展示了isolateR在揭示和编目微生物多样性的细微谱系方面的熟练程度,倡导在个体宿主内进行更有针对性和更细致的探索,以在生成菌株库时实现尽可能高的菌株级分辨率。

Abstract

Motivation

Sanger sequencing of taxonomic marker genes (e.g. 16S/18S/ITS/rpoB/cpn60) represents the leading method for identifying a wide range of microorganisms including bacteria, archaea, and fungi. However, the manual processing of sequence data and limitations associated with conventional BLAST searches impede the efficient generation of strain libraries essential for cataloging microbial diversity and discovering novel species.
Results

isolateR addresses these challenges by implementing a standardized and scalable three-step pipeline that includes: (1) automated batch processing of Sanger sequence files, (2) taxonomic classification via global alignment to type strain databases in accordance with the latest international nomenclature standards, and (3) straightforward creation of strain libraries and handling of clonal isolates, with the ability to set customizable sequence dereplication thresholds and combine data from multiple sequencing runs into a single library. The tool's user-friendly design also features interactive HTML outputs that simplify data exploration and analysis. Additionally, in silico benchmarking done on two comprehensive human gut genome catalogues (IMGG and Hadza hunter-gather populations) showcase the proficiency of isolateR in uncovering and cataloging the nuanced spectrum of microbial diversity, advocating for a more targeted and granular exploration within individual hosts to achieve the highest strain-level resolution possible when generating culture collections.

代码

https://github.com/bdaisley/isolateR

案例

安装包

r 复制代码
#Install BiocManager if not already installed
if (!requireNamespace("BiocManager", quietly = TRUE))
  install.packages("BiocManager")

#Install devtools if not already installed
if (!requireNamespace("devtools", quietly = TRUE))
  install.packages("devtools")
  
#Install the required Bioconductor dependencies
BiocManager::install(c("Biostrings", "msa", "sangeranalyseR", "sangerseqR"), update=FALSE)

#Install isolateR
devtools::install_github("bdaisley/isolateR")

Step 1: isoQC - Automated quality trimming of sequences

r 复制代码
library(isolateR)

#Set path of directory where the .ab1 files. In this case, using example dataset in R
fpath1 <- system.file("extdata/abif_examples/rocket_salad", package = "isolateR")

isoQC.S4 <- isoQC(input=fpath1,
                  export_html=TRUE,
                  export_csv=TRUE,
                  export_fasta=TRUE,
                  verbose=FALSE,
                  min_phred_score = 20,
                  min_length = 200,
                  sliding_window_cutoff = NULL,
                  sliding_window_size = 15,
                  date=NULL)

Step 2: isoTAX - Assign taxonomy

r 复制代码
#Specify location of CSV output from 'isoQC' step containing quality trimmed sequences
fpath2 <- file.path(fpath1, "isolateR_output/01_isoQC_trimmed_sequences_PASS.csv")

isoTAX.S4 <- isoTAX(input=fpath2,
                    export_html=TRUE,
                    export_csv=TRUE,
                    db="16S",
                    quick_search=TRUE,
                    phylum_threshold=75.0,
                    class_threshold=78.5,
                    order_threshold=82.0,
                    family_threshold=86.5,
                    genus_threshold=96.5,
                    species_threshold=98.7)

Step 3: isoLIB - Generate strain library

r 复制代码
#Specify location of CSV output from isoTAX in Step 2
fpath3 <- file.path(fpath1, "isolateR_output/02_isoTAX_results.csv")

isoLIB.S4 <- isoLIB(input=fpath3,
		    old_lib_csv=NULL,
		    group_cutoff=0.995,
                    include_warnings=FALSE)

参考

相关推荐
超龄超能程序猿1 天前
YOLOv8 五大核心模型:从检测到分类的介绍
yolo·分类·数据挖掘
Dekesas96951 天前
【深度学习】基于Faster R-CNN的黄瓜幼苗智能识别与定位系统,农业AI新突破
人工智能·深度学习·r语言
Dingdangcat861 天前
中药材图像识别与分类 RetinaNet-R101-FPN模型详解
人工智能·数据挖掘
Serendipity_Carl1 天前
数据可视化实战之链家
python·数据可视化·数据清洗
Mia@1 天前
数据分析(一)
数据挖掘·数据分析
青啊青斯1 天前
二、PaddlePaddle seal_recognition印章内容提取
人工智能·r语言·paddlepaddle
Piar1231sdafa1 天前
木结构建筑元素识别与分类:基于Faster R-CNN的高精度检测方法
分类·r语言·cnn
imbackneverdie1 天前
国自然申报技术路线图模板
图像处理·人工智能·信息可视化·数据可视化·学术·国自然·国家自然科学基金
ASD123asfadxv1 天前
基于YOLO11的汽车车灯状态识别与分类_C3k2-wConv改进_1
分类·数据挖掘·汽车
小辉懂编程1 天前
数据分析入门:使用pandas进行数据处理 (数据读取,数据清洗,数据处理,数据可视化)
数据挖掘·数据分析·pandas