C++:背包问题习题

1. 货币系统

1371. 货币系统 - AcWing题库

给定 V 种货币(单位:元),每种货币使用的次数不限。

不同种类的货币,面值可能是相同的。

现在,要你用这 V 种货币凑出 N 元钱,请问共有多少种不同的凑法。

解题思路

我们两层循环分别枚举到第i种物品了,价值为j

如果枚举的价值大于当前枚举物品的价值就将f[i][j]的值赋为f[i][j-w[i]].这个值记录用w[i]凑到j的方法数量

不选的方法与f[i-1][j]的值相同。即不用w[i]凑到j的方法

AC代码
cpp 复制代码
#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>

using namespace std;

int v,n;
long long w[30];
long long f[30][10010];//前i种物品选择价值为j的方案数
int main()
{
    scanf("%d%d",&v,&n);
    
    for(int i=1;i<=v;i++)
    {
        scanf("%d",&w[i]);
    }
    f[0][0]=1;
    for(int i=1;i<=v;i++)
    {
        for(int j=0;j<=n;j++)
        {
            if(j>=w[i])//选了
            {
                f[i][j]=f[i][j-w[i]];//凑f[i][j-w[i]](即少选一次w[i]的方法) 有几个方法,就是用w[i] 来凑到j的方法
            }
            //没选
            f[i][j]+=f[i-1][j];//加上没有这个i的方法,即不用w[i]来凑到j的方法
        }
    }
    
    printf("%lld",f[v][n]);
    return 0;
}

2. 01背包

2. 01背包问题 - AcWing题库

有 N件物品和一个容量是 V 的背包。每件物品只能使用一次。

第 i 件物品的体积是 vi,价值是 wi。

求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。

输出最大价值。

解题思路

两层循环分别来枚举,到第i个物品,体积不小于j

如果j小于v[i](v这个数组用来记录i个物品的体积,w数组用来记录价值)那只能不拿,价值就是不选i体积为j的价值

如果不小于就可以选择拿还是不拿,将拿了第i个物品体积才到j与不拿这个物品体积就到j的价值进行比较取较大值

AC代码
cpp 复制代码
#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
int N, V;
int v[1010];
int w[1010];
int f[1010][1010];//前i件物品中,寻找不超过j个体积的最大价值
int main()
{
    scanf("%d%d", &N, &V);
    for (int i = 1; i <= N; i++)
    {
        scanf("%d%d", &v[i], &w[i]);
    }
    
    for(int i=1;i<=N;i++)//前
    {
        for(int j=0;j<=V;j++)//体积
        {
            if(j<v[i])//不能拿
            {
                f[i][j]=f[i-1][j];//与没i是一样的,取值为不选第i件物品体积为j的最大价值
            }
            else//可以拿
            {
                f[i][j]=max(f[i-1][j-v[i]]+w[i],f[i-1][j]);//比较不拿第i件物品体积达到j与拿了第i件物品体积达到j谁更大
            }
        }
    }
    
    printf("%d\n", f[N][V]);
    return 0;
}

3. 完全背包

有 N 种物品和一个容量是 V 的背包,每种物品都有无限件可用。

第 i 种物品的体积是 vi,价值是 wi。

求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。

输出最大价值。

解题思路

与01背包不同的是完全背包的每一种都可以无限选择,所以它选择第i个不用使i-1后再统计j-v[i],因为之前可能使用过i了没使用(或使用了不如不用)那f[i][j-v[i]]也在之前初始化为了f[i-1][j-v[i]]

AC代码
cpp 复制代码
#include<iostream>
#include<cstring>
#include<cstdio>

using namespace std;

int N,V;
int v[1010];
int w[1010];

int f[1010][1010];

int main()
{
    scanf("%d%d",&N,&V);
    
    for(int i=1;i<=N;i++)
    {
        scanf("%d %d",&v[i],&w[i]);
    }
    
    for(int i=1;i<=N;i++)//枚举第i件物品
    {
        for(int j=0;j<=V;j++)
        {
            if(j<v[i])//不能放
            {
                f[i][j]=f[i-1][j];//统计没放的
            }
            else//能放
            f[i][j]=max(f[i-1][j],f[i][j-v[i]]+w[i]);//没放这一次的价值,即选了k-1次i物品的价值
            
        }
    }
    
    cout<<f[N][V]<<endl;
    
    return 0;
}

4. 砝码称重

你有一架天平和 N 个砝码,这 N 个砝码重量依次是 W1,W2,⋅⋅⋅,WNW1,W2,···,WN。

请你计算一共可以称出多少种不同的正整数重量?

注意砝码可以放在天平两边。

解题思路

两层循环,枚举第i个砝码,能否凑成j的重量,存储值为布尔类型

一个砝码有三种情况,放在天平右边(看当前重量减去这个砝码重量是否能凑成(取绝对值,因为这边超过另一半,超过的重量也成立)),放在左边(同上不过是加上)与不放(看上一个可不可以即可),只要有一种可以就能凑成。

将0个砝码,0重量初始化为true,但最后累计时不能算上,因为只统计正整数,0不是

AC代码
cpp 复制代码
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>

using namespace std;

int N;
int v[110];

bool f[110][200010];

int main()
{
    scanf("%d",&N);
    int sum=0;
    for(int i=1;i<=N;i++)
    {
        scanf("%d",&v[i]);
        sum+=v[i];
    }
    f[0][0]=true;//0肯定能凑出来,什么也不放就行
    for(int i=1;i<=N;i++)//第i个
    {
        for(int j=0;j<=sum;j++)//凑j的重量,能否凑成
        {
            //1如果不放就能达到j这个重量那肯定可以,2如果放到左边看不放之前有没有这个重量
            f[i][j]=f[i-1][j]|f[i-1][j+v[i]]|f[i-1][abs(j-v[i])];//不放和放左边和放右边
        }
    }
    int res=0;
    for(int i=1;i<=sum;i++)//i不能从0开始因为0不是正整数
    {
        if(f[N][i])
        res++;
    }
    
    printf("%d",res);
    return 0;
}

这篇就到这里啦(づ ̄3 ̄)づ╭❤ ~(๑′ᴗ‵๑)I Lᵒᵛᵉᵧₒᵤ❤

相关推荐
常利兵1 分钟前
Kotlin作用域函数全解:run/with/apply/let/also与this/it的魔法对决
android·开发语言·kotlin
姜不吃葱5 分钟前
【力扣热题100】双指针—— 接雨水
数据结构·算法·leetcode·力扣热题100
PineappleCoder10 分钟前
大小写 + 标点全搞定!JS 如何精准统计单词频率?
前端·javascript·算法
雨落倾城夏未凉14 分钟前
5.通过拷贝构造函数复制一个对象,假如对象的成员中有个指针类型的变量,如何避免拷贝出来的副本中的该成员之下行同一块内存(等价于默认拷贝构造函数有没有缺点)
c++·后端
幼稚园的山代王14 分钟前
Kotlin-基础语法练习一
android·开发语言·kotlin
雨落倾城夏未凉15 分钟前
4.深拷贝VS浅拷贝
c++·后端
重生成为编程大王21 分钟前
Java ConcurrentHashMap 深度解析
java·开发语言
tanyongxi661 小时前
C++ 特殊类设计与单例模式解析
java·开发语言·数据结构·c++·算法·单例模式
qq_513970441 小时前
力扣 hot100 Day76
算法·leetcode·职场和发展
遗憾皆是温柔1 小时前
24. 什么是不可变对象,好处是什么
java·开发语言·面试·学习方法