天津大学:《2025深度解读DeepSeek:原理与效应》|44页|附PPT下载方法

导 读

INTRODUCTION

今天分享是由天津大学自然语言处理实验室团队带来的:《2025深度解读DeepSeek:原理与效应》,关于DeepSeek大语言模型技术原理与效应的报告文章,主要介绍了DeepSeek模型的发展历程、技术创新、效应以及未来展望。详细介绍了DeepSeek大语言模型的技术原理与创新,并通过分析其效应,展示了DeepSeek在推动AI技术进步和产业变革中的重要作用。

天津大学:《2025深度解读DeepSeek:原理与效应》

**网盘下载:**https://pan.quark.cn/s/4e6d7b5688b0

后续会陆续分享DeepSeek讲座视频,关注我们不迷路哦!

以下是部分内容预览:

1.生成式AI与大语言模型发展:

生成式AI使用生成式模型生成各类数据,包括语言、语音、图片和视频等。

核心技术包括注意力机制(Attention)、Transformer架构、扩展法则(Scaling Laws)和与人类价值对齐的数据生成(RLHF)。

生成式求解问题(o1/R1)涉及生成复杂问题的答案,进行推理。

2.DeepSeek模型架构与技术创新:

DeepSeek V2:采用稀疏MoE模型,包括DeepSeekMoE和MLA技术。模型总参数量为236B,激活参数量为21B,上下文窗口为128K。

DeepSeek V3:引入基础设施和多令牌预测(MTP),实现一次预测多个topken。模型总参数量为671B,激活参数量为37B,训练数据量为14.8T tokens。

3.DeepSeek效应:

**算力价格战:**DeepSeek的出现打破了传统技术护城河,引发了算力价格战。

开源与闭源:DeepSeek R1的开源发布是开源大模型历史上的里程碑,打破了美国AI企业的技术封闭。

**认知误区:**DeepSeek颠覆了美国对中国AI水平的认知,证明大模型研发成本可以大幅降低。

4.未来展望:

未来AGI/ASI的实现可能需要3-5个重大突破。

DeepSeek R2预计将很快发布,主要聚焦于数学、代码、逻辑推理等领域。

强调AI推理能力与安全性的结合,提出创新解决方案的需求。

篇幅有限以上只是部分内容概览

来源:天津大学

相关推荐
八荒被注册了8 分钟前
Nginx +Nginx-http-flv-module 推流&拉流
运维·nginx·http
斯普信云原生组17 分钟前
Elasticsearch知识汇总之ElasticSearch部署
大数据·elasticsearch·jenkins
陈奕昆32 分钟前
4.3【LLaMA-Factory实战】教育大模型:个性化学习路径生成系统全解析
人工智能·python·学习·llama·大模型微调
wzx_Eleven34 分钟前
【论文阅读】基于客户端数据子空间主角度的聚类联邦学习分布相似性高效识别
论文阅读·人工智能·机器学习·网络安全·聚类
ykjhr_3d35 分钟前
场景可视化与数据编辑器:构建数据应用情境
人工智能
补三补四37 分钟前
遗传算法(GA)
人工智能·算法·机器学习·启发式算法
梁小憨憨40 分钟前
循环卷积(Circular Convolutions)
人工智能·笔记·深度学习·机器学习
非凡ghost44 分钟前
水印云:AI赋能,让图像处理变得简单高效
图像处理·人工智能
EQ-雪梨蛋花汤1 小时前
【相机标定】OpenCV 相机标定中的重投影误差与角点三维坐标计算详解
人工智能·opencv
豌豆花下猫1 小时前
Python 潮流周刊#101:Rust 开发的 Python 类型检查工具(摘要)
后端·python·ai