目录

关于opencv::triangulatePoints()函数的注意事项

void cv::triangulatePoints(

InputArray projMatr1, // 左相机投影矩阵 3×4

InputArray projMatr2, // 右相机投影矩阵 3×4

InputArray projPoints1, // 左相机图像点 (2×N)

InputArray projPoints2, // 右相机图像点 (2×N)

OutputArray points4D // 输出的齐次坐标 (4×N)

);

该函数的输入要求:

  1. 投影矩阵 projMatr1projMatr2 必须是 3×4K * [R | T] 矩阵。

  2. 输入点 projPoints1projPoints2 必须是 2×N 形状的 归一化相机坐标 (Normalized Image Coordinates)。

  3. 输出点 points4D齐次坐标 ,即 X, Y, Z, W,需要手动转换为非齐次坐标: X′=X/W,Y′=Y/W,Z′=Z/WX' = X / W, \quad Y' = Y / W, \quad Z' = Z / WX′=X/W,Y′=Y/W,Z′=Z/W

    常见错误

    错误原因:未正确处理 undistortPoints() 的结果

    当我们使用 cv::undistortPoints() 进行畸变矫正后,它返回的点坐标是 归一化相机坐标 (单位焦距 f=1 的坐标系),而不是像素坐标。因此:

  4. 如果 triangulatePoints() 的投影矩阵 包含了相机内参 K ,则输入的点必须是 像素坐标 (未除去 K)。

  5. 如果输入的是 归一化坐标 (已除 K),那么投影矩阵就不应该包含 K
    正确方法 1:使用归一化坐标

    // 1. 去畸变,得到归一化坐标
    cv::undistortPoints(projPoints_left, projPoints_left, K_left, dist_left);
    cv::undistortPoints(projPoints_right, projPoints_right, K_right, dist_right);

    // 2. 只使用 [R | T] 作为投影矩阵
    cv::Mat P1 = RT_left;
    cv::Mat P2 = RT_right;

    // 3. 三角化
    cv::triangulatePoints(P1, P2, projPoints_left, projPoints_right, Final_points3D);

    正确方法 2:保持像素坐标

    如果希望直接在像素坐标下进行三角化,可以在 cv::undistortPoints() 中传入 新的投影矩阵 P=K,让输出点保持在像素坐标系:

    复制代码
    // 1. 去畸变,但保持像素坐标
    cv::undistortPoints(projPoints_left, projPoints_left, K_left, dist_left, cv::noArray(), K_left);
    cv::undistortPoints(projPoints_right, projPoints_right, K_right, dist_right, cv::noArray(), K_right);
    
    // 2. 计算投影矩阵 (带K)
    cv::Mat P1 = K_left * RT_left;
    cv::Mat P2 = K_right * RT_right;
    
    // 3. 三角化
    cv::triangulatePoints(P1, P2, projPoints_left, projPoints_right, Final_points3D);
本文是转载文章,点击查看原文
如有侵权,请联系 xyy@jishuzhan.net 删除
相关推荐
忍者算法8 分钟前
什么是 LLM(大语言模型)?——从直觉到应用的全面解读
人工智能·语言模型·自然语言处理
SoFlu软件机器人15 分钟前
从 Copilot 到垂直工具:AI 编程的 “专精特新“ 进化论
人工智能·copilot
蚝油菜花17 分钟前
Video-T1:视频生成实时手术刀!清华腾讯「帧树算法」终结闪烁抖动
人工智能·开源
KARL34 分钟前
cursor、cline很🔥,AI浪潮下作为前端如何构建自己的vscode编程agent
前端·人工智能
James. 常德 student41 分钟前
深度学习之自动求导
人工智能·深度学习
神经星星1 小时前
新加坡国立大学张阳团队开发第二代RNA结构预测算法,多项基准测试超越SOTA
人工智能·深度学习·机器学习
STApril1 小时前
REST API VS GraphQL API
人工智能·后端·面试
有一只柴犬1 小时前
Spring AI & Trae ,助力开发微信小程序
人工智能·后端·spring
声网1 小时前
昆仑万维发布 Mureka TTS API 和音乐推理大模型;通义发布小尺寸端到端多模态模型 Qwen2.5-Omni丨日报
人工智能
_painter1 小时前
【深度学习的数学】导数
人工智能·深度学习