基于yolov11的棉花品种分类检测系统python源码+pytorch模型+评估指标曲线+精美GUI界面

【算法介绍】

基于YOLOv11的棉花品种分类检测系统是一种高效、准确的农作物品种识别工具。该系统利用YOLOv11深度学习模型,能够实现对棉花主要品种,包括树棉(G. arboreum)、海岛棉(G. barbadense)、草棉(G. herbaceum)和陆地棉(G. hirsutum)的自动识别与分类。

YOLOv11作为YOLO系列的最新版本,引入了多尺度特征融合、注意力机制等先进技术,显著提升了检测精度和速度。这使得该系统能够在复杂的农田环境中,快速准确地识别出不同品种的棉花。

该系统通过采集棉花的图像数据,利用YOLOv11模型进行训练和优化,使其能够学习到各种棉花品种的特征。在实际应用中,系统只需对棉花植株或棉花的某个部位进行拍照,即可自动识别并分类出所属的品种。

基于YOLOv11的棉花品种分类检测系统具有广泛的应用前景,可用于棉花种植管理、品种改良、病虫害预警等领域。通过该系统,农民和农业专家可以更加便捷地了解棉花的品种分布和生长状况,为精准农业提供有力的技术支撑。

【效果展示】

【训练数据集介绍】

数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)

图片数量(jpg文件个数):402

标注数量(xml文件个数):402

标注数量(txt文件个数):402

标注类别数:4

标注类别名称(注意yolo格式类别顺序不和这个对应,而以labels文件夹classes.txt为准):["G-arboreum","G-barbadense","G-herbaceum","G-hirsitum"]

每个类别标注的框数:

G-arboreum 框数 = 294

G-barbadense 框数 = 210

G-herbaceum 框数 = 236

G-hirsitum 框数 = 189

总框数:929

使用标注工具:labelImg

标注规则:对类别进行画矩形框

重要说明:暂无

特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注

图像预览:

标注例子:

【训练信息】

|-----------------|-------|
| 参数 | 值 |
| 训练集图片数 | 363 |
| 验证集图片数 | 41 |
| 训练map | 44.0% |
| 训练精度(Precision) | 32.6% |
| 训练召回率(Recall) | 44.0% |

验证集评估精度信息

|--------------|--------|-----------|-------|-------|-------|----------|
| Class | Images | Instances | P | R | mAP50 | mAP50-95 |
| all | 41 | 125 | 0.326 | 0.44 | 0.44 | 0.235 |
| G-arboreum | 11 | 26 | 0.13 | 0.154 | 0.132 | 0.0542 |
| G-barbadense | 9 | 44 | 0.266 | 0.295 | 0.243 | 0.143 |
| G-herbaceum | 11 | 27 | 0.411 | 0.815 | 0.733 | 0.428 |
| G-hirsitum | 10 | 28 | 0.499 | 0.497 | 0.651 | 0.315 |

【测试环境】

windows10

anaconda3+python3.8

torch==2.3.0

ultralytics==8.3.81

onnxruntime==1.16.3

【界面代码】

复制代码
class Ui_MainWindow(QtWidgets.QMainWindow):
    signal = QtCore.pyqtSignal(str, str)
 
    def setupUi(self):
        self.setObjectName("MainWindow")
        self.resize(1280, 728)
        self.centralwidget = QtWidgets.QWidget(self)
        self.centralwidget.setObjectName("centralwidget")
 
        self.weights_dir = './weights'
 
        self.picture = QtWidgets.QLabel(self.centralwidget)
        self.picture.setGeometry(QtCore.QRect(260, 10, 1010, 630))
        self.picture.setStyleSheet("background:black")
        self.picture.setObjectName("picture")
        self.picture.setScaledContents(True)
        self.label_2 = QtWidgets.QLabel(self.centralwidget)
        self.label_2.setGeometry(QtCore.QRect(10, 10, 81, 21))
        self.label_2.setObjectName("label_2")
        self.cb_weights = QtWidgets.QComboBox(self.centralwidget)
        self.cb_weights.setGeometry(QtCore.QRect(10, 40, 241, 21))
        self.cb_weights.setObjectName("cb_weights")
        self.cb_weights.currentIndexChanged.connect(self.cb_weights_changed)
 
        self.label_3 = QtWidgets.QLabel(self.centralwidget)
        self.label_3.setGeometry(QtCore.QRect(10, 70, 72, 21))
        self.label_3.setObjectName("label_3")
        self.hs_conf = QtWidgets.QSlider(self.centralwidget)
        self.hs_conf.setGeometry(QtCore.QRect(10, 100, 181, 22))
        self.hs_conf.setProperty("value", 25)
        self.hs_conf.setOrientation(QtCore.Qt.Horizontal)
        self.hs_conf.setObjectName("hs_conf")
        self.hs_conf.valueChanged.connect(self.conf_change)
        self.dsb_conf = QtWidgets.QDoubleSpinBox(self.centralwidget)
        self.dsb_conf.setGeometry(QtCore.QRect(200, 100, 51, 22))
        self.dsb_conf.setMaximum(1.0)
        self.dsb_conf.setSingleStep(0.01)
        self.dsb_conf.setProperty("value", 0.25)
        self.dsb_conf.setObjectName("dsb_conf")
        self.dsb_conf.valueChanged.connect(self.dsb_conf_change)
        self.dsb_iou = QtWidgets.QDoubleSpinBox(self.centralwidget)
        self.dsb_iou.setGeometry(QtCore.QRect(200, 160, 51, 22))
        self.dsb_iou.setMaximum(1.0)
        self.dsb_iou.setSingleStep(0.01)
        self.dsb_iou.setProperty("value", 0.45)
        self.dsb_iou.setObjectName("dsb_iou")
        self.dsb_iou.valueChanged.connect(self.dsb_iou_change)
        self.hs_iou = QtWidgets.QSlider(self.centralwidget)
        self.hs_iou.setGeometry(QtCore.QRect(10, 160, 181, 22))
        self.hs_iou.setProperty("value", 45)
        self.hs_iou.setOrientation(QtCore.Qt.Horizontal)
        self.hs_iou.setObjectName("hs_iou")
        self.hs_iou.valueChanged.connect(self.iou_change)
        self.label_4 = QtWidgets.QLabel(self.centralwidget)
        self.label_4.setGeometry(QtCore.QRect(10, 130, 72, 21))
        self.label_4.setObjectName("label_4")
        self.label_5 = QtWidgets.QLabel(self.centralwidget)
        self.label_5.setGeometry(QtCore.QRect(10, 210, 72, 21))
        self.label_5.setObjectName("label_5")
        self.le_res = QtWidgets.QTextEdit(self.centralwidget)
        self.le_res.setGeometry(QtCore.QRect(10, 240, 241, 400))
        self.le_res.setObjectName("le_res")
        self.setCentralWidget(self.centralwidget)
        self.menubar = QtWidgets.QMenuBar(self)
        self.menubar.setGeometry(QtCore.QRect(0, 0, 1110, 30))
        self.menubar.setObjectName("menubar")
        self.setMenuBar(self.menubar)
        self.statusbar = QtWidgets.QStatusBar(self)
        self.statusbar.setObjectName("statusbar")
        self.setStatusBar(self.statusbar)
        self.toolBar = QtWidgets.QToolBar(self)
        self.toolBar.setToolButtonStyle(QtCore.Qt.ToolButtonTextBesideIcon)
        self.toolBar.setObjectName("toolBar")
        self.addToolBar(QtCore.Qt.TopToolBarArea, self.toolBar)
        self.actionopenpic = QtWidgets.QAction(self)
        icon = QtGui.QIcon()
        icon.addPixmap(QtGui.QPixmap(":/images/1.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off)
        self.actionopenpic.setIcon(icon)
        self.actionopenpic.setObjectName("actionopenpic")
        self.actionopenpic.triggered.connect(self.open_image)
        self.action = QtWidgets.QAction(self)
        icon1 = QtGui.QIcon()
        icon1.addPixmap(QtGui.QPixmap(":/images/2.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off)
        self.action.setIcon(icon1)
        self.action.setObjectName("action")
        self.action.triggered.connect(self.open_video)
        self.action_2 = QtWidgets.QAction(self)
        icon2 = QtGui.QIcon()
        icon2.addPixmap(QtGui.QPixmap(":/images/3.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off)
        self.action_2.setIcon(icon2)
        self.action_2.setObjectName("action_2")
        self.action_2.triggered.connect(self.open_camera)
 
        self.actionexit = QtWidgets.QAction(self)
        icon3 = QtGui.QIcon()
        icon3.addPixmap(QtGui.QPixmap(":/images/4.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off)
        self.actionexit.setIcon(icon3)
        self.actionexit.setObjectName("actionexit")
        self.actionexit.triggered.connect(self.exit)
 
        self.toolBar.addAction(self.actionopenpic)
        self.toolBar.addAction(self.action)
        self.toolBar.addAction(self.action_2)
        self.toolBar.addAction(self.actionexit)
 
        self.retranslateUi()
        QtCore.QMetaObject.connectSlotsByName(self)
        self.init_all()

【模型可检测出4类】

树棉(G. arboreum)、海岛棉(G. barbadense)、草棉(G. herbaceum)和陆地棉(G. hirsutum)

【常用评估参数介绍】

在目标检测任务中,评估模型的性能是至关重要的。你提到的几个术语是评估模型性能的常用指标。下面是对这些术语的详细解释:

  1. Class
    • 这通常指的是模型被设计用来检测的目标类别。例如,一个模型可能被训练来检测车辆、行人或动物等不同类别的对象。
  2. Images
    • 表示验证集中的图片数量。验证集是用来评估模型性能的数据集,与训练集分开,以确保评估结果的公正性。
  3. Instances
    • 在所有图片中目标对象的总数。这包括了所有类别对象的总和,例如,如果验证集包含100张图片,每张图片平均有5个目标对象,则Instances为500。
  4. P(精确度Precision)
    • 精确度是模型预测为正样本的实例中,真正为正样本的比例。计算公式为:Precision = TP / (TP + FP),其中TP表示真正例(True Positives),FP表示假正例(False Positives)。
  5. R(召回率Recall)
    • 召回率是所有真正的正样本中被模型正确预测为正样本的比例。计算公式为:Recall = TP / (TP + FN),其中FN表示假负例(False Negatives)。
  6. mAP50
    • 表示在IoU(交并比)阈值为0.5时的平均精度(mean Average Precision)。IoU是衡量预测框和真实框重叠程度的指标。mAP是一个综合指标,考虑了精确度和召回率,用于评估模型在不同召回率水平上的性能。在IoU=0.5时,如果预测框与真实框的重叠程度达到或超过50%,则认为该预测是正确的。
  7. mAP50-95
    • 表示在IoU从0.5到0.95(间隔0.05)的范围内,模型的平均精度。这是一个更严格的评估标准,要求预测框与真实框的重叠程度更高。在目标检测任务中,更高的IoU阈值意味着模型需要更准确地定位目标对象。mAP50-95的计算考虑了从宽松到严格的多个IoU阈值,因此能够更全面地评估模型的性能。

这些指标共同构成了评估目标检测模型性能的重要框架。通过比较不同模型在这些指标上的表现,可以判断哪个模型在实际应用中可能更有效。

【使用步骤】

使用步骤:

(1)首先根据官方框架ultralytics安装教程安装好yolov11环境,并安装好pyqt5

(2)切换到自己安装的yolo11环境后,并切换到源码目录,执行python main.py即可运行启动界面,进行相应的操作即可

【提供文件】

python源码

yolo11n.pt模型

训练的map,P,R曲线图(在weights\results.png)

测试图片(在test_img文件夹下面)

注意提供训练的数据集

相关推荐
Julian.zhou1 小时前
从Manus到OpenManus:AI智能体技术如何重塑未来生活场景?
人工智能·自然语言处理·生活·交互
XTurnV0071 小时前
Cherry Studio也可以用GPT-4o绘画啦!无需PLUS,无需梯子,国内可用!
人工智能
霖大侠1 小时前
REVISITING MAE PRE-TRAINING FOR 3D MEDICALIMAGE SEGMENTATION
人工智能·深度学习·机器学习·3d
WHATEVER_LEO1 小时前
【每日论文】MetaSpatial: Reinforcing 3D Spatial Reasoning in VLMs for the Metaverse
人工智能·深度学习·神经网络·计算机视觉·3d·自然语言处理
橙色小博2 小时前
最最最基本神经网络及其原理、程序
人工智能·深度学习·神经网络
大模型真好玩2 小时前
新王登基!DeepSeek-V3-0324横空出世,国产大模型还得看DeepSeek(详细DeepSeek-V3-0324模型评测)
人工智能·深度学习·deepseek
深度学习机器2 小时前
Docling:统一的多文档解析框架 支持多种文档类型的处理与转换
人工智能·github·产品
小小面试官2 小时前
DeepSeek详解:探索下一代语言模型
人工智能·pytorch·知识图谱·位置编码·多头注意力·deepseek·核心功能
南山星火2 小时前
人工智能与软件工程结合的发展趋势
人工智能·软件工程
Dream25122 小时前
【文本张量表示】
人工智能