365打卡第J7周:对于ResNeXt-50算法的思考

🏡 我的环境:

语言环境:Python3.10

编译器:Jupyter Lab

深度学习环境:torch==2.5.1 torchvision==0.20.1

------------------------------分割线---------------------------------

该代码定义了一个残差单元,包含以下部分:

  1. 捷径连接(shortcut)处理
  2. 主路径的三层卷积层结构
  3. 分组卷积的实现
  4. 最终的残差连接和激活

这部分代码在功能上没有问题,但有一个需要注意的点:

主路径的最后一层卷积输出通道数是filters * 2,这与捷径分支的通道数保持一致(当conv_shortcut=True时)。这是正确的设计,保证了两个分支可以相加。

分析一下潜在的通道数和尺寸匹配问题:

  1. conv_shortcut=True时:

    • shortcut分支:输出通道数为filters * 2
    • 主路径:最终输出通道数也为filters * 2
    • 尺寸变化:shortcut使用strides参数调整尺寸
  2. conv_shortcut=False时:

    • shortcut直接使用输入x
    • 则直接将输入张量 x 作为快捷连接。
    • 在这种情况下,即使通道数不一致也不会报错的可能原因如下:此时,shortcut 的维度不同于 x 的维度。但是,由于 Add 层具有广播机制,因此会自动对两个输入进行广播,以使它们的维度相同。这是因为 Add 层会在计算中使用广播机制,这使得在执行相加操作之前,较小张量的形状会被扩展以匹配较大张量的形状。具体来说,如果 shortcut 的形状是 (h, w, c1),x 的形状是 (h, w, c2),其中 c1 不等于 c2,则 shortcut 会被自动扩展为 (h, w, c2),使得 x 和 shortcut 的形状相同。因此,即使通道数不一致,也可以进行相加操作。
相关推荐
weixin_3077791312 分钟前
软件演示环境动态扩展与成本优化:基于目标跟踪与计划扩展的AWS Auto Scaling策略
算法·云原生·云计算·aws
Carl_奕然13 分钟前
【机器视觉】一文掌握常见图像增强算法。
人工智能·opencv·算法·计算机视觉
放羊郎13 分钟前
人工智能算法优化YOLO的目标检测能力
人工智能·算法·yolo·视觉slam·建图
小呀小萝卜儿29 分钟前
2025-11-15 学习记录--Python-LSTM模型定义(PyTorch)
python·学习·lstm
百锦再1 小时前
第15章 并发编程
android·java·开发语言·python·rust·django·go
无敌最俊朗@1 小时前
友元的作用与边界
算法
laufing1 小时前
pyinstaller 介绍
python·构建打包
Miraitowa_cheems1 小时前
LeetCode算法日记 - Day 104: 通配符匹配
linux·数据结构·算法·leetcode·深度优先·动态规划
xier_ran1 小时前
深度学习:从零开始手搓一个深层神经网络
人工智能·深度学习·神经网络
程序员东岸1 小时前
从零开始学二叉树(上):树的初识 —— 从文件系统到树的基本概念
数据结构·经验分享·笔记·学习·算法