365打卡第J7周:对于ResNeXt-50算法的思考

🏡 我的环境:

语言环境:Python3.10

编译器:Jupyter Lab

深度学习环境:torch==2.5.1 torchvision==0.20.1

------------------------------分割线---------------------------------

该代码定义了一个残差单元,包含以下部分:

  1. 捷径连接(shortcut)处理
  2. 主路径的三层卷积层结构
  3. 分组卷积的实现
  4. 最终的残差连接和激活

这部分代码在功能上没有问题,但有一个需要注意的点:

主路径的最后一层卷积输出通道数是filters * 2,这与捷径分支的通道数保持一致(当conv_shortcut=True时)。这是正确的设计,保证了两个分支可以相加。

分析一下潜在的通道数和尺寸匹配问题:

  1. conv_shortcut=True时:

    • shortcut分支:输出通道数为filters * 2
    • 主路径:最终输出通道数也为filters * 2
    • 尺寸变化:shortcut使用strides参数调整尺寸
  2. conv_shortcut=False时:

    • shortcut直接使用输入x
    • 则直接将输入张量 x 作为快捷连接。
    • 在这种情况下,即使通道数不一致也不会报错的可能原因如下:此时,shortcut 的维度不同于 x 的维度。但是,由于 Add 层具有广播机制,因此会自动对两个输入进行广播,以使它们的维度相同。这是因为 Add 层会在计算中使用广播机制,这使得在执行相加操作之前,较小张量的形状会被扩展以匹配较大张量的形状。具体来说,如果 shortcut 的形状是 (h, w, c1),x 的形状是 (h, w, c2),其中 c1 不等于 c2,则 shortcut 会被自动扩展为 (h, w, c2),使得 x 和 shortcut 的形状相同。因此,即使通道数不一致,也可以进行相加操作。
相关推荐
大阳1236 分钟前
线程(基本概念和相关命令)
开发语言·数据结构·经验分享·算法·线程·学习经验
小艳加油6 分钟前
Python机器学习与深度学习;Transformer模型/注意力机制/目标检测/语义分割/图神经网络/强化学习/生成式模型/自监督学习/物理信息神经网络等
python·深度学习·机器学习·transformer
钢铁男儿1 小时前
如何构建一个神经网络?从零开始搭建你的第一个深度学习模型
人工智能·深度学习·神经网络
weixin_307779131 小时前
VS Code配置MinGW64编译GNU 科学库 (GSL)
开发语言·c++·vscode·算法
Silence zero2 小时前
day43_2025-08-17
人工智能·深度学习·机器学习
学行库小秘2 小时前
ANN神经网络回归预测模型
人工智能·python·深度学习·神经网络·算法·机器学习·回归
文弱_书生2 小时前
为什么神经网络在长时间训练过程中会存在稠密特征图退化的问题
人工智能·深度学习·神经网络
Yn3122 小时前
在 Python 中使用 json 模块的完整指南
开发语言·python·json
没落之殇2 小时前
基于C语言实现的HRV分析方法 —— 与Kubios和MATLAB对比
算法
秋难降2 小时前
线段树的深度解析(最长递增子序列类解题步骤)
数据结构·python·算法