使用Ollama+Langchaingo+Gin通过定义prompt模版实现翻译功能

1. 中英文翻译功能

提示词为:你是一个只能进行中英文翻译的机器。请翻译这段文字到{``{.outpugLang}}:{``{.input}}

比如:你是一个只能进行中英文翻译的机器。请翻译这段文字到英文:我是阿里qwen大模型


2.代码编写

相对上一节的功能中,本次用到了prompt提示词编写相关功能。

先贴一份完整代码。

go 复制代码
package main

import (
	"context"
	"github.com/gin-gonic/gin"
	"github.com/tmc/langchaingo/llms"
	"github.com/tmc/langchaingo/llms/ollama"
	"github.com/tmc/langchaingo/prompts"
	"net/http"
)

func main() {
	r := gin.Default()
	v1 := r.Group("/api/v1")
	{
		v1.POST("/translate", translator)
	}
	r.Run(":8080")
}

func translator(c *gin.Context) {
	var requestData struct {
		OutputLang string `json:"outputLang"`
		Text       string `json:"text"`
	}
	if err := c.BindJSON(&requestData); err != nil {
		c.JSON(http.StatusBadRequest, gin.H{"error": "Invalid Json."})
		return
	}
	//拼接提示词,prompt是有两条数据的一个切片prompt
	prompt := prompts.NewChatPromptTemplate([]prompts.MessageFormatter{
		prompts.NewSystemMessagePromptTemplate("你是一个只能进行中英文翻译的机器。", nil),
		prompts.NewHumanMessagePromptTemplate(`翻译这段文字到 {{.outputLang}}:{{.text}}`,
			[]string{".outputLang", "text"}),
	})
	//填充prompt
	vals := map[string]any{
		"outputLang": requestData.OutputLang,
		"text":       requestData.Text,
	}
	//把vals填充到prompt中
	messages, _ := prompt.FormatMessages(vals)

	//默认是访问本地ollama,如果需要访问别的地址的ollama,可以通过Getenv环境变量参数来指定。
	llm, err := ollama.New(ollama.WithModel("qwen"))
	if err != nil {
		c.JSON(http.StatusBadRequest, gin.H{"error": err.Error()})
		return
	}
	content := []llms.MessageContent{
		llms.TextParts(messages[0].GetType(), messages[0].GetContent()),
		llms.TextParts(messages[1].GetType(), messages[1].GetContent()),
	}
	response, _ := llm.GenerateContent(context.Background(), content)
	c.JSON(http.StatusOK, response)
}

构建+拼接提示词

首先定义一个用于生成翻译任务的提示模板。

prompts.NewChatPromptTemplate 创建了一个聊天提示模板,包含两条消息格式化器:

第一条是系统消息模板,内容为"你是一个只能进行中英文翻译的机器。",用于向语言模型明确其角色和功能。

第二条是用户消息模板,内容为翻译这段文字到 {``{.outputLang}}:{``{.text}},其中{``{.outputLang}}{``{.text}}是模板变量,分别表示目标语言和需要翻译的文本。[]string{".outputLang", "text"}指定了模板变量的名称。

填充prompt

定义一个vals字典,用于存储模板变量的值。requestData.OutputLang表示用户指定的目标语言,requestData.Text表示需要翻译的原始文本。这些值将被填充到前面定义的提示模板中。

构造输入内容

content是一个llms.MessageContent类型的切片,用于存储输入到语言模型的内容。llms.TextParts方法将消息的类型和内容分别提取出来,构造为MessageContent对象。

调用llm.GenerateContent(context.Background(), content)方法,将构造好的输入内容传递给语言模型,生成翻译结果。response变量存储了语言模型返回的翻译结果。

来看看MessageContent结构体中都有些什么。

bash 复制代码
type MessageContent struct {
	Role  ChatMessageType
	Parts []ContentPart
}

Role 是一个 ChatMessageType 类型的字段,表示消息的角色。在聊天系统中,消息通常有不同类型的角色,比如系统角色、用户角色等等。

Parts 是一个 ContentPart 类型的切片,表示消息的内容部分。消息的内容可能由多个部分组成。

那么对于代码:

bash 复制代码
content := []llms.MessageContent{
	llms.TextParts(messages[0].GetType(), messages[0].GetContent()),
	llms.TextParts(messages[1].GetType(), messages[1].GetContent()),
}

content 是一个 MessageContent 切片,包含了两个消息的内容部分:

第一个消息(系统消息):

Role:SystemMessage(系统消息的角色)

Parts:

类型:"text"(文本类型)

值:"你是一个只能进行中英文翻译的机器。"(系统消息的内容)

第二个消息(用户消息):

Role:HumanMessage(用户消息的角色)

Parts:

类型:"text"(文本类型)

值:"翻译这段文字到 [目标语言]:[需要翻译的文本]"(用户消息的内容,其中 [目标语言] 和 [需要翻译的文本] 是动态填充的值)

所以构造的content内容是:

bash 复制代码
content := []llms.MessageContent{
	{
		Role: SystemMessage,
		Parts: []ContentPart{
			{
				Type:  "text",
				Value: "你是一个只能进行中英文翻译的机器。",
			},
		},
	},
	{
		Role: HumanMessage,
		Parts: []ContentPart{
			{
				Type:  "text",
				Value: "翻译这段文字到 中文:Hello, world!",
			},
		},
	},
}
相关推荐
效率客栈老秦16 小时前
Python Trae提示词开发实战(12):AI实现API自动化批量调用与数据处理让效率提升10倍
人工智能·python·ai·prompt·trae
猫头虎16 小时前
2025年AI领域年度深度总结:始于DeepSeek R1开源发布,终于Manus天价出海
人工智能·langchain·开源·prompt·aigc·ai编程·编程技术
CoderJia程序员甲18 小时前
GitHub 热榜项目 - 日榜(2026-1-9)
开源·大模型·llm·github·ai教程
树獭非懒19 小时前
AI大模型小白手册|如何像工程师一样写Prompt?
llm·aigc·ai编程
新元代码20 小时前
论文写作 Prompt 模板库
prompt
视觉&物联智能21 小时前
【杂谈】-多智能体系统的效能悖论:协作优势的认知边界
ai·llm·agent·智能体·人工 智能
谁怕平生太急21 小时前
MAI-UI的prompt
ui·prompt·gui agent·mai-ui
无妄无望21 小时前
The Prompt Report: A Systematic Survey of Prompt Engineering Techniques(文本部分 )
人工智能·自然语言处理·prompt
努力犯错1 天前
LTX-2 进阶 Prompt 技巧:从入门到专业视频创作
人工智能·数码相机·机器学习·计算机视觉·开源·prompt·音视频
AI架构师易筋1 天前
多模态 LLM 与本地多模态检索 PoC:从原理到工程落地(图片 / 视频关键帧 / LaTeX 公式)
人工智能·llm·多模态·多模态llm