二分类与多分类

一、任务定义与核心区别

维度 二分类 多分类(K类,K≥3)
输出空间 两个互斥类别(正/负类) K个互斥类别(如猫/狗/鸟)
输出层设计 1个神经元 + Sigmoid(概率) K个神经元 + Softmax(概率分布)
损失函数 二元交叉熵(Binary Cross-Entropy) 多元交叉熵(Categorical Cross-Entropy)
典型场景 垃圾邮件检测、疾病诊断 手写数字识别、新闻主题分类

二、模型选择与调整

1. 二分类常用模型
  • 线性模型:逻辑回归(Logistic Regression) + 正则化(L1/L2)。

  • 树模型:随机森林(Random Forest)、梯度提升树(XGBoost)------ 直接输出概率。

  • 深度学习

    • 单输出神经元 + Sigmoid。

    • 特征提取器(如CNN/BERT) + 全连接层。

2. 多分类常用模型
  • 原生多分类模型

    • 决策树、随机森林、XGBoost(直接支持多类)。

    • 深度学习:K维输出 + Softmax。

三、评估指标对比

1. 二分类指标
  • 基础指标:准确率(Accuracy)、精确率(Precision)、召回率(Recall)、F1-Score。

  • 阈值相关

    • ROC曲线(Receiver Operating Characteristic)
2. 多分类指标
  • 加权平均(Weighted):按类别样本数加权计算。

四、损失函数与输出层实现

1. 二分类实现
python 复制代码
model = nn.Sequential(
    nn.Linear(input_dim, 1),  # 单神经元输出
    nn.Sigmoid()              # 映射到[0,1]
)
loss_fn = nn.BCELoss()        # 二元交叉熵

2. 多分类实现

python 复制代码
model = nn.Sequential(
    nn.Linear(input_dim, K),  # K个神经元
    nn.Softmax(dim=1)         # 输出概率分布
)
loss_fn = nn.CrossEntropyLoss()  # 注:PyTorch的CrossEntropyLoss已含Softmax

注意

  • 标签格式:二分类用 float(如0.0/1.0),多分类用 long 型类别索引(如0,1,2...)

五、类别不平衡问题处理

1. 重采样(Resampling)
  • 过采样:对小类复制或生成合成样本(如SMOTE)。

  • 欠采样:对大类随机删除样本(可能丢失信息)。

2. 损失函数加权
  • 二分类BCEWithLogitsLoss(pos_weight=torch.tensor([10.0]))(提高正类权重)。

  • 多分类CrossEntropyLoss(weight=torch.tensor([1.0, 5.0, 3.0]))(按类别权重)。

3. 阈值调整(仅二分类)
  • 默认阈值0.5可能不最优,可通过ROC曲线选择最佳阈值。
相关推荐
Shawn_Shawn3 小时前
人工智能入门概念介绍
人工智能
极限实验室3 小时前
程序员爆哭!我们让 COCO AI 接管 GitLab 审查后,团队直接起飞:连 CTO 都说“这玩意儿比人靠谱多了
人工智能·gitlab
Maynor9964 小时前
Z-Image: 100% Free AI Image Generator
人工智能
爬点儿啥4 小时前
[Ai Agent] 10 MCP基础:快速编写你自己的MCP服务器(Server)
人工智能·ai·langchain·agent·transport·mcp
张人玉4 小时前
百度 AI 图像识别 WinForms 应用代码分析笔记
人工智能·笔记·百度
测试人社区-小明5 小时前
智能弹性伸缩算法在测试环境中的实践与验证
人工智能·测试工具·算法·机器学习·金融·机器人·量子计算
Spring AI学习5 小时前
Spring AI深度解析(9/50):可观测性与监控体系实战
java·人工智能·spring
罗西的思考5 小时前
【Agent】MemOS 源码笔记---(5)---记忆分类
人工智能·深度学习·算法
dajun1811234566 小时前
反 AI 生成技术兴起:如何识别与过滤海量的 AI 伪造内容?
人工智能
人邮异步社区6 小时前
PRML为何是机器学习的经典书籍中的经典?
人工智能·机器学习