二分类与多分类

一、任务定义与核心区别

维度 二分类 多分类(K类,K≥3)
输出空间 两个互斥类别(正/负类) K个互斥类别(如猫/狗/鸟)
输出层设计 1个神经元 + Sigmoid(概率) K个神经元 + Softmax(概率分布)
损失函数 二元交叉熵(Binary Cross-Entropy) 多元交叉熵(Categorical Cross-Entropy)
典型场景 垃圾邮件检测、疾病诊断 手写数字识别、新闻主题分类

二、模型选择与调整

1. 二分类常用模型
  • 线性模型:逻辑回归(Logistic Regression) + 正则化(L1/L2)。

  • 树模型:随机森林(Random Forest)、梯度提升树(XGBoost)------ 直接输出概率。

  • 深度学习

    • 单输出神经元 + Sigmoid。

    • 特征提取器(如CNN/BERT) + 全连接层。

2. 多分类常用模型
  • 原生多分类模型

    • 决策树、随机森林、XGBoost(直接支持多类)。

    • 深度学习:K维输出 + Softmax。

三、评估指标对比

1. 二分类指标
  • 基础指标:准确率(Accuracy)、精确率(Precision)、召回率(Recall)、F1-Score。

  • 阈值相关

    • ROC曲线(Receiver Operating Characteristic)
2. 多分类指标
  • 加权平均(Weighted):按类别样本数加权计算。

四、损失函数与输出层实现

1. 二分类实现
python 复制代码
model = nn.Sequential(
    nn.Linear(input_dim, 1),  # 单神经元输出
    nn.Sigmoid()              # 映射到[0,1]
)
loss_fn = nn.BCELoss()        # 二元交叉熵

2. 多分类实现

python 复制代码
model = nn.Sequential(
    nn.Linear(input_dim, K),  # K个神经元
    nn.Softmax(dim=1)         # 输出概率分布
)
loss_fn = nn.CrossEntropyLoss()  # 注:PyTorch的CrossEntropyLoss已含Softmax

注意

  • 标签格式:二分类用 float(如0.0/1.0),多分类用 long 型类别索引(如0,1,2...)

五、类别不平衡问题处理

1. 重采样(Resampling)
  • 过采样:对小类复制或生成合成样本(如SMOTE)。

  • 欠采样:对大类随机删除样本(可能丢失信息)。

2. 损失函数加权
  • 二分类BCEWithLogitsLoss(pos_weight=torch.tensor([10.0]))(提高正类权重)。

  • 多分类CrossEntropyLoss(weight=torch.tensor([1.0, 5.0, 3.0]))(按类别权重)。

3. 阈值调整(仅二分类)
  • 默认阈值0.5可能不最优,可通过ROC曲线选择最佳阈值。
相关推荐
掘金安东尼1 分钟前
用 Python 搭桥,Slack 上跑起来的 MCP 数字员工
人工智能·面试·github
skywalk81635 分钟前
体验智谱清言的AutoGLM进行自动化的操作(Chrome插件)
运维·人工智能·自动化·glm·autoglm
Chaos_Wang_26 分钟前
NLP高频面试题(三十)——LLama系列模型介绍,包括LLama LLama2和LLama3
人工智能·自然语言处理·llama
databook30 分钟前
线性判别分析(LDA):降维与分类的完美结合
python·机器学习·scikit-learn
新智元32 分钟前
美国 CS 专业卷上天,满分学霸惨遭藤校全拒!父亲大受震撼引爆热议
人工智能·openai
新智元34 分钟前
美国奥数题撕碎 AI 数学神话,顶级模型现场翻车!最高得分 5%,DeepSeek 唯一逆袭
人工智能·openai
Baihai_IDP44 分钟前
「DeepSeek-V3 技术解析」:无辅助损失函数的负载均衡
人工智能·llm·deepseek
硅谷秋水1 小时前
大语言模型智体的综述:方法论、应用和挑战(下)
人工智能·深度学习·机器学习·语言模型·自然语言处理
TGITCIC1 小时前
BERT与Transformer到底选哪个-下部
人工智能·gpt·大模型·aigc·bert·transformer
Lx3521 小时前
AutoML逆袭:普通开发者如何玩转大模型调参
人工智能