NVIDIA Jetson 环境安装指导 PyTorch | Conda | cudnn | docker

本文适用于Jetson Nano、TX1/TX2、Xavier 和 Orin系列的设备,供大家参考。

1、PyTorch不同版本安装

这里适用于Jetson Nano、TX1/TX2、Xavier 和 Orin ,需要JetPack 4.2以上。

下载地址:PyTorch for Jetson - Jetson & Embedded Systems / Announcements - NVIDIA Developer Forums

这些pip wheel 是为 ARM aarch64 架构构建的,下载后是一个xxx.whl文件

然后用 pip install xxx.whl 进行安装就可以啦~

比如安装torch 2.3,可以选择两个版本(CUDA12.2、或者CUDA12.4)

需要注意的是 JetPack对应的版本是6,才能安装torch 2.3

如果上面网址中没找到最新的torch版本

请参考下面的网址:

https://pypi.jetson-ai-lab.dev/

比如,系统的CUDA版本是12.6的,点击进去进行查找

然后搜索一个关键字,比如"torch"就可以下载啦

2、Jetson 安装 Conda

(推荐)清华源下载地址:https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/

选择aarch64架构的,然后下载运行安装就可以啦~

或者去官网下载,也是可以的https://www.anaconda.com/download/success

3、适用于Jetson的AI容器

开源地址:https://github.com/dusty-nv/jetson-containers/tree/master

通过构建docker,为 NVIDIA Jetson 🚀🤖 提供最新的 AI/ML 软件包

下面是一些主流的模型和框架,完整列表可以参阅 packages 目录

| |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ML | pytorch tensorflow jax onnxruntime deepstream holoscan CTranslate2 JupyterLab |
| LLM | SGLang vLLM MLC AWQ transformers text-generation-webui ollama llama.cpp llama-factory exllama AutoGPTQ FlashAttention DeepSpeed bitsandbytes xformers |
| VLM | llava llama-vision VILA LITA NanoLLM ShapeLLM Prismatic xtuner |
| VIT | NanoOWL NanoSAM Segment Anything (SAM) Track Anything (TAM) clip_trt |
| RAG | llama-index langchain jetson-copilot NanoDB FAISS RAFT |
| L4T | l4t-pytorch l4t-tensorflow l4t-ml l4t-diffusion l4t-text-generation |
| CUDA | cupy cuda-python pycuda numba opencv:cuda cudf cuml |
| Robotics | Cosmos Genesis ROS LeRobot OpenVLA 3D Diffusion Policy Crossformer MimicGen OpenDroneMap ZED |
| Graphics | stable-diffusion-webui comfyui nerfstudio meshlab pixsfm gsplat |
| Mamba | mamba mambavision cobra dimba videomambasuite |
| Speech | whisper whisper_trt piper riva audiocraft voicecraft xtts |
| Home/IoT | homeassistant-core wyoming-whisper wyoming-openwakeword wyoming-piper |

下面是一些示例demo:

在 NVIDIA Jetson AGX Orin 上使用 LLaVA-1.5 13B 进行多模态语音聊天(容器:NanoLLM

在 NVIDIA Jetson AGX Orin 上与 Llama-2-70B 进行交互式语音聊天(容器:NanoLLM)

NVIDIA Jetson 上的实时多模态 VectorDB(容器:nanodb)

Live Llava 2.0 - Jetson Orin 上的 VILA + 多模态 NanoDB(容器:NanoLLM

4、Jetson 部署推理

开源地址:https://github.com/dusty-nv/jetson-inference?tab=readme-ov-file

该项目使用 TensorRT 在 C++ 或 Python 的 GPU 上运行优化网络,并使用 PyTorch 训练模型。

支持的 DNN 视觉基元包括用于图像分类的 imageNet、用于对象检测的 detectNet、用于语义分割的 segNet、用于姿势估计的 poseNet 和用于动作识别的 actionNet

提供了从实时摄像机源进行流式传输、使用 WebRTC 制作 Web 应用程序以及支持 ROS/ROS2 的示例。

下面是不同视觉任务的推理代码参考文档:

| C++ | Python |
|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Image Recognition | imageNet | imageNet |
| Object Detection | detectNet | detectNet |
| Segmentation | segNet | segNet |
| Pose Estimation | poseNet | poseNet |
| Action Recognition | actionNet | actionNet |
| Background Removal | backgroundNet | actionNet |
| Monocular Depth | depthNet | depthNet |

PS:有其他的问题可以先在论坛查找,基本能解决大部分问题

https://forums.developer.nvidia.com/

分享完成~

相关推荐
无风听海5 分钟前
神经网络之经验风险最小化
人工智能·深度学习·神经网络
音视频牛哥5 分钟前
轻量级RTSP服务的工程化设计与应用:从移动端到边缘设备的实时媒体架构
人工智能·计算机视觉·音视频·音视频开发·rtsp播放器·安卓rtsp服务器·安卓实现ipc功能
该用户已不存在41 分钟前
在 Gemini CLI 中使用 Gemini 3 Pro 实操指南
人工智能·ai编程·gemini
东皇太星1 小时前
ResNet (2015)(卷积神经网络)
人工智能·神经网络·cnn
aircrushin1 小时前
TRAE SOLO 中国版,正式发布!AI 编程的 "Solo" 时代来了?
前端·人工智能
Java中文社群1 小时前
保姆级教程:3分钟带你轻松搭建N8N自动化平台!(内附视频)
人工智能·工作流引擎
是Yu欸1 小时前
DevUI MateChat 技术演进:UI 与逻辑解耦的声明式 AI 交互架构
前端·人工智能·ui·ai·前端框架·devui·metachat
我不是QI2 小时前
周志华《机器学习---西瓜书》 一
人工智能·python·机器学习·ai
H***99762 小时前
月之暗面公开强化学习训练加速方法:训练速度暴涨97%,长尾延迟狂降93%
人工智能·深度学习·机器学习
二川bro2 小时前
Python在AI领域应用全景:2025趋势与案例
开发语言·人工智能·python