让 LLM 来评判 | 技巧与提示

这是 让 LLM 来评判 系列文章的第六篇,敬请关注系列文章:

LLM 评估模型已知偏差及缓解措施:

  • 缺乏内部一致性 :同一 prompt 输入评估模型执行多次得到的结果可能不一样 (如果温度参数不设为 0)。
    • 缓解措施:遵循 "自我一致性 (self-consistency)" 设置 prompt,输入模型执行多次并保留多数结果
  • 自我偏好 :LLM 评估模型更 偏好自己的输出模式,因此会对模式相似的结果评分偏高。
    • 缓解措施:采用陪审团机制
  • 输入扰动不敏感 :评估模型对 扰动输入 的辨识效果较差,难以提供一致的评分范围 (更多实验结果可以参考 这个链接)。例如对于施加了相同程度噪声的文本,使用评估模型评估文本质量的评分无法反映噪声的程度。
    • 缓解措施:
      • 要求模型先输出详细的推理过程 再输出评分
      • 在 prompt 中添加一致的评分标准
  • 位置偏差 :评估模型更 偏好特定位置的答案。例如在成对比较时,Claude 和 GPT3.5 在多次测试中通常会偏好某一个位置,例如第一个或第二个答案。
    • 缓解措施:
      • 随机调整答案位置
      • 计算所有选项的对数概率并归一化
  • 冗长偏好 (长度偏差) :评估模型更偏好冗长的答案。
  • 难以对齐人类答案
  • 格式偏差 :如果输入模型的 prompt 格式与其训练数据的格式 相差甚远,可能导致模型的评估结果不准确。例如,成对比较模型的训练集数据格式中提供了参考答案,如果在评估时没有给定参考答案或者给定的参考答案格式有误,那么评估结果就不可信。
    • 缓解措施:仔细遵循评估模型训练集 prompt 格式 (比如指令微调模型的格式)。

选择合适的 LLM 评估任务

LLM 评估特性:


英文原文: evaluation-guidebook/contents/model-as-a-judge/tips-and-tricks.md

原文作者: clefourrier

译者: SuSung-boy

审校: adeenayakup

相关推荐
ASS-ASH1 天前
AI时代之向量数据库概览
数据库·人工智能·python·llm·embedding·向量数据库·vlm
带刺的坐椅1 天前
用 10 行 Java8 代码,开发一个自己的 ClaudeCodeCLI?你信吗?
java·ai·llm·agent·solon·mcp·claudecode·skills
aopstudio2 天前
OpenClaw 实测体验:Agent 框架现在到底能不能用?
人工智能·llm·agent·openclaw
千桐科技2 天前
qKnow 知识平台核心能力解析|第 03 期:结构化抽取能力全流程介绍
大模型·llm·知识图谱·知识库·rag·qknow·知识平台
CoderJia程序员甲2 天前
GitHub 热榜项目 - 日榜(2026-02-04)
开源·大模型·llm·github·ai教程
gr17852 天前
通过dify文件上传能力,解决较大文本与LLM实时交互问题
python·llm·aigc·dify
EdisonZhou3 天前
MAF快速入门(14)快速集成A2A Agent
llm·agent·.net core
gentle coder3 天前
【langchain】AI应用开发框架
langchain·llm·rag
doll ~CJ3 天前
Large Language Model(LLM)应用开发学习实践(三)
langchain·llm·提示词工程·ai应用
Rolei_zl3 天前
(AI生成) openClaw 的前世今生
llm·aigc