让 LLM 来评判 | 技巧与提示

这是 让 LLM 来评判 系列文章的第六篇,敬请关注系列文章:

LLM 评估模型已知偏差及缓解措施:

  • 缺乏内部一致性 :同一 prompt 输入评估模型执行多次得到的结果可能不一样 (如果温度参数不设为 0)。
    • 缓解措施:遵循 "自我一致性 (self-consistency)" 设置 prompt,输入模型执行多次并保留多数结果
  • 自我偏好 :LLM 评估模型更 偏好自己的输出模式,因此会对模式相似的结果评分偏高。
    • 缓解措施:采用陪审团机制
  • 输入扰动不敏感 :评估模型对 扰动输入 的辨识效果较差,难以提供一致的评分范围 (更多实验结果可以参考 这个链接)。例如对于施加了相同程度噪声的文本,使用评估模型评估文本质量的评分无法反映噪声的程度。
    • 缓解措施:
      • 要求模型先输出详细的推理过程 再输出评分
      • 在 prompt 中添加一致的评分标准
  • 位置偏差 :评估模型更 偏好特定位置的答案。例如在成对比较时,Claude 和 GPT3.5 在多次测试中通常会偏好某一个位置,例如第一个或第二个答案。
    • 缓解措施:
      • 随机调整答案位置
      • 计算所有选项的对数概率并归一化
  • 冗长偏好 (长度偏差) :评估模型更偏好冗长的答案。
  • 难以对齐人类答案
  • 格式偏差 :如果输入模型的 prompt 格式与其训练数据的格式 相差甚远,可能导致模型的评估结果不准确。例如,成对比较模型的训练集数据格式中提供了参考答案,如果在评估时没有给定参考答案或者给定的参考答案格式有误,那么评估结果就不可信。
    • 缓解措施:仔细遵循评估模型训练集 prompt 格式 (比如指令微调模型的格式)。

选择合适的 LLM 评估任务

LLM 评估特性:


英文原文: evaluation-guidebook/contents/model-as-a-judge/tips-and-tricks.md

原文作者: clefourrier

译者: SuSung-boy

审校: adeenayakup

相关推荐
大模型教程3 分钟前
快速上手Qwen Code:本地部署与环境配置全攻略
程序员·llm·agent
离开地球表面_991 小时前
AIGC时代的必备技能--Prompt工程
llm·aigc
亚里随笔3 小时前
突破智能体训练瓶颈:DreamGym如何通过经验合成实现可扩展的强化学习?
人工智能·语言模型·自然语言处理·llm·agentic
AI大模型3 小时前
本地部署vLLM+Qwen3:高性能大模型推理引擎,比Ollama强在哪?
程序员·llm·agent
在未来等你15 小时前
AI Agent设计模式 Day 5:Reflexion模式:自我反思与持续改进
设计模式·llm·react·ai agent·plan-and-execute
智泊AI17 小时前
为什么需要垂直领域的SFT微调?垂直领域SFT微调怎么做?
llm
大千AI助手1 天前
PPT: Pre-trained Prompt Tuning - 预训练提示调优详解
人工智能·神经网络·llm·prompt·ppt·大千ai助手·预训练提示调优
大模型教程1 天前
用Unsloth微调一个老中医垂直领域大模型
程序员·llm·agent
AI大模型1 天前
全网最细,Qwen3大模型极致微调与推理实战:Unsloth一站式教程
程序员·llm·agent