让 LLM 来评判 | 技巧与提示

这是 让 LLM 来评判 系列文章的第六篇,敬请关注系列文章:

LLM 评估模型已知偏差及缓解措施:

  • 缺乏内部一致性 :同一 prompt 输入评估模型执行多次得到的结果可能不一样 (如果温度参数不设为 0)。
    • 缓解措施:遵循 "自我一致性 (self-consistency)" 设置 prompt,输入模型执行多次并保留多数结果
  • 自我偏好 :LLM 评估模型更 偏好自己的输出模式,因此会对模式相似的结果评分偏高。
    • 缓解措施:采用陪审团机制
  • 输入扰动不敏感 :评估模型对 扰动输入 的辨识效果较差,难以提供一致的评分范围 (更多实验结果可以参考 这个链接)。例如对于施加了相同程度噪声的文本,使用评估模型评估文本质量的评分无法反映噪声的程度。
    • 缓解措施:
      • 要求模型先输出详细的推理过程 再输出评分
      • 在 prompt 中添加一致的评分标准
  • 位置偏差 :评估模型更 偏好特定位置的答案。例如在成对比较时,Claude 和 GPT3.5 在多次测试中通常会偏好某一个位置,例如第一个或第二个答案。
    • 缓解措施:
      • 随机调整答案位置
      • 计算所有选项的对数概率并归一化
  • 冗长偏好 (长度偏差) :评估模型更偏好冗长的答案。
  • 难以对齐人类答案
  • 格式偏差 :如果输入模型的 prompt 格式与其训练数据的格式 相差甚远,可能导致模型的评估结果不准确。例如,成对比较模型的训练集数据格式中提供了参考答案,如果在评估时没有给定参考答案或者给定的参考答案格式有误,那么评估结果就不可信。
    • 缓解措施:仔细遵循评估模型训练集 prompt 格式 (比如指令微调模型的格式)。

选择合适的 LLM 评估任务

LLM 评估特性:


英文原文: evaluation-guidebook/contents/model-as-a-judge/tips-and-tricks.md

原文作者: clefourrier

译者: SuSung-boy

审校: adeenayakup

相关推荐
山顶夕景6 小时前
【LLM】大模型数据清洗&合成&增强方法
大模型·llm·训练数据
tiger1198 小时前
FPGA 在大模型推理中的应用
人工智能·llm·fpga·大模型推理
AndrewHZ8 小时前
【AI黑话日日新】什么是大模型的test-time scaling?
人工智能·深度学习·大模型·llm·推理加速·测试时缩放
GPUStack10 小时前
vLLM、SGLang 融资背后,AI 推理正在走向系统化与治理
大模型·llm·vllm·模型推理·sglang·高性能推理
Tadas-Gao12 小时前
大模型幻觉治理新范式:SCA与[PAUSE]注入技术的深度解析与创新设计
人工智能·深度学习·机器学习·架构·大模型·llm
猿小羽12 小时前
基于 Spring AI 与 Streamable HTTP 构建 MCP Server 实践
java·llm·spring ai·mcp·streamable http
AndrewHZ13 小时前
【AI黑话日日新】什么是隐式CoT?
人工智能·深度学习·算法·llm·cot·复杂推理
一个处女座的程序猿1 天前
CV之VLM之LLM-OCR:《DeepSeek-OCR 2: Visual Causal Flow》翻译与解读
llm·ocr·cv·vlm
dawdo2221 天前
自己动手从头开始编写LLM推理引擎(9)-KV缓存实现和优化
缓存·llm·transformer·qwen·kv cache
小杨互联网2 天前
LLM应用三大隐形风险与防护方案详解
llm