【知识图谱】基于BERT的食品推荐知识图谱问答系统

本系统是一个基于知识图谱和BERT技术的食品推荐问答系统,核心功能如下:

  1. 疾病推荐食品:输入疾病名称,推荐适合食用的食品。

  2. 疾病忌口食品:输入疾病名称,推荐需要避免的食品。

  3. 食品对应疾病:输入食品名称,推荐该食品对哪些疾病有益或有害。

系统架构

• BERT命名实体识别(NER):使用预训练的BERT模型进行NER,准确识别用户问题中的关键实体(如疾病名称和食品名称),处理复杂句子结构。

• 知识图谱:存储疾病与食品的关系,快速检索相关推荐信息。

• Flask后端服务:通过Flask框架实现后端服务,提供Web页面交互。

问答示例

• 用户提问:"高血压患者适合吃什么?"

• 系统回答:"高血压患者适合吃的食物包括芹菜、燕麦、香蕉等。"

系统优势

  1. 高效准确:BERT快速识别关键实体,知识图谱快速检索信息。

  2. 易用性强:提供Web界面,用户可通过浏览器访问。

  3. 专业性强:基于医学知识图谱,回答具有专业性和可信度。

系统限制

  1. 问答范围有限:仅支持疾病与食品相关问答。

  2. 依赖知识图谱数据:回答质量依赖知识图谱数据的完整性和准确性,需定期更新。

总结

基于BERT和知识图谱的食品推荐问答系统为用户提供便捷平台,帮助了解特定疾病的食品建议。希望这个系统能帮助大家更好地管理饮食健康。


如果你对这个系统感兴趣,或者有任何问题和建议,欢迎在评论区留言。我会持续更新功能,让它更智能、实用!


相关推荐
AI袋鼠帝1 分钟前
Claude4.5+Gemini3 接管电脑桌面,这回是真无敌了..
人工智能·windows·aigc
Lun3866buzha6 分钟前
农业害虫检测_YOLO11-C3k2-EMSC模型实现与分类识别_1
人工智能·分类·数据挖掘
方见华Richard16 分钟前
世毫九量子原住民教育理念全书
人工智能·经验分享·交互·原型模式·空间计算
忆~遂愿16 分钟前
GE 引擎进阶:依赖图的原子性管理与异构算子协作调度
java·开发语言·人工智能
凯子坚持 c17 分钟前
CANN-LLM:基于昇腾 CANN 的高性能、全功能 LLM 推理引擎
人工智能·安全
学电子她就能回来吗25 分钟前
深度学习速成:损失函数与反向传播
人工智能·深度学习·学习·计算机视觉·github
The Straggling Crow25 分钟前
model training platform
人工智能
爱吃泡芙的小白白26 分钟前
突破传统:CNN卷积层(普通/空洞)核心技术演进与实战指南
人工智能·神经网络·cnn·卷积层·空洞卷积·普通卷积
人道领域33 分钟前
AI抢人大战:谁在收割你的红包
大数据·人工智能·算法
初恋叫萱萱37 分钟前
CANN 系列深度篇:基于 ge 图引擎构建高效 AI 执行图
人工智能