【知识图谱】基于BERT的食品推荐知识图谱问答系统

本系统是一个基于知识图谱和BERT技术的食品推荐问答系统,核心功能如下:

  1. 疾病推荐食品:输入疾病名称,推荐适合食用的食品。

  2. 疾病忌口食品:输入疾病名称,推荐需要避免的食品。

  3. 食品对应疾病:输入食品名称,推荐该食品对哪些疾病有益或有害。

系统架构

• BERT命名实体识别(NER):使用预训练的BERT模型进行NER,准确识别用户问题中的关键实体(如疾病名称和食品名称),处理复杂句子结构。

• 知识图谱:存储疾病与食品的关系,快速检索相关推荐信息。

• Flask后端服务:通过Flask框架实现后端服务,提供Web页面交互。

问答示例

• 用户提问:"高血压患者适合吃什么?"

• 系统回答:"高血压患者适合吃的食物包括芹菜、燕麦、香蕉等。"

系统优势

  1. 高效准确:BERT快速识别关键实体,知识图谱快速检索信息。

  2. 易用性强:提供Web界面,用户可通过浏览器访问。

  3. 专业性强:基于医学知识图谱,回答具有专业性和可信度。

系统限制

  1. 问答范围有限:仅支持疾病与食品相关问答。

  2. 依赖知识图谱数据:回答质量依赖知识图谱数据的完整性和准确性,需定期更新。

总结

基于BERT和知识图谱的食品推荐问答系统为用户提供便捷平台,帮助了解特定疾病的食品建议。希望这个系统能帮助大家更好地管理饮食健康。


如果你对这个系统感兴趣,或者有任何问题和建议,欢迎在评论区留言。我会持续更新功能,让它更智能、实用!


相关推荐
mwq301231 天前
位置编码的技术演进线路:从绝对到相对,再到几何一致性
人工智能
mwq301231 天前
外推性-位置编码的阿喀琉斯之踵
人工智能
DP+GISer1 天前
基于站点数据进行遥感机器学习参数反演-以XGBOOST反演LST为例(附带数据与代码)试读
人工智能·python·机器学习·遥感与机器学习
boonya1 天前
Langchain 和LangGraph 为何是AI智能体开发的核心技术
人工智能·langchain
元宇宙时间1 天前
DID联盟:Web3数字主权基础设施的战略构建
人工智能·web3·区块链
点云SLAM1 天前
弱纹理图像特征匹配算法推荐汇总
人工智能·深度学习·算法·计算机视觉·机器人·slam·弱纹理图像特征匹配
mwq301231 天前
旋转位置编码RoPE:用旋转艺术,解开 Transformer 的位置之谜
人工智能
赵得C1 天前
人工智能的未来之路:华为全栈技术链与AI Agent应用实践
人工智能·华为
糖葫芦君1 天前
25-GRPO IS SECRETLY A PROCESS REWARD MODEL
人工智能·大模型
俊男无期1 天前
【AI入门】通俗易懂讲AI(初稿)
人工智能