【知识图谱】基于BERT的食品推荐知识图谱问答系统

本系统是一个基于知识图谱和BERT技术的食品推荐问答系统,核心功能如下:

  1. 疾病推荐食品:输入疾病名称,推荐适合食用的食品。

  2. 疾病忌口食品:输入疾病名称,推荐需要避免的食品。

  3. 食品对应疾病:输入食品名称,推荐该食品对哪些疾病有益或有害。

系统架构

• BERT命名实体识别(NER):使用预训练的BERT模型进行NER,准确识别用户问题中的关键实体(如疾病名称和食品名称),处理复杂句子结构。

• 知识图谱:存储疾病与食品的关系,快速检索相关推荐信息。

• Flask后端服务:通过Flask框架实现后端服务,提供Web页面交互。

问答示例

• 用户提问:"高血压患者适合吃什么?"

• 系统回答:"高血压患者适合吃的食物包括芹菜、燕麦、香蕉等。"

系统优势

  1. 高效准确:BERT快速识别关键实体,知识图谱快速检索信息。

  2. 易用性强:提供Web界面,用户可通过浏览器访问。

  3. 专业性强:基于医学知识图谱,回答具有专业性和可信度。

系统限制

  1. 问答范围有限:仅支持疾病与食品相关问答。

  2. 依赖知识图谱数据:回答质量依赖知识图谱数据的完整性和准确性,需定期更新。

总结

基于BERT和知识图谱的食品推荐问答系统为用户提供便捷平台,帮助了解特定疾病的食品建议。希望这个系统能帮助大家更好地管理饮食健康。


如果你对这个系统感兴趣,或者有任何问题和建议,欢迎在评论区留言。我会持续更新功能,让它更智能、实用!


相关推荐
newxtc12 分钟前
【 广州产权交易所-注册安全分析报告-无验证方式导致安全隐患】
开发语言·人工智能·selenium·安全·yolo
AIzealot无28 分钟前
Qwen3 Embedding报告随笔
人工智能·深度学习·算法·论文·embedding·论文笔记·搜广推
渡我白衣30 分钟前
《深度学习进阶(四)——多模态智能:语言、视觉与语音的融合》
人工智能·深度学习
weixin_4180076031 分钟前
用opencv来识别信用卡的号码 Vs 使用yolo+paddleocr
人工智能·opencv·yolo
爱凤的小光44 分钟前
OpenCV的数据类型二
人工智能·opencv
flay1 小时前
Claude Code + Git:AI驱动的版本管理最佳实践
人工智能·ai编程
王一点er1 小时前
为什么LLM中KL散度需要近似计算
人工智能·深度学习
golang学习记1 小时前
Github狂飙8k star,Claude Code 模板:一键搞定项目配置的高级法器
人工智能
悠闲蜗牛�1 小时前
深度学习与大规模系统构建:AI技术在实际项目中的应用
人工智能·深度学习
小虎AI生活1 小时前
我把Claude Code卸载了,只因这款国产免费神器...
人工智能·ai编程