Spark核心架构与RDD:大数据处理的基石

Apache Spark作为新一代分布式计算引擎,其高效性和灵活性源于独特的运行架构与核心数据结构RDD。本文简要解析Spark的核心组件及RDD的核心特性,帮助开发者快速理解其设计思想。

一、Spark运行架构

Spark采用标准的**Master-Slave架构,核心组件包括:

Driver:作为控制节点,负责解析用户程序为作业(Job),调度任务(Task),并监控Executor的执行。

Executor:工作节点中的JVM进程,执行具体任务,管理数据缓存(如RDD),任务间相互独立,具备容错能力。

Master & Worker:在独立部署模式下,Master负责资源调度,Worker管理节点资源,类似于YARN中的ResourceManager与NodeManager。

提交流程 :在YARN环境中,Spark支持两种模式:

  1. Client模式:Driver运行在本地,适用于测试。

  2. Cluster模式:Driver运行在YARN集群,适合生产环境。两者核心流程均为通过ResourceManager申请资源,启动Executor并反向注册,最终由Driver触发任务执行。

二、RDD:弹性分布式数据集

RDD(Resilient Distributed Dataset)是Spark的核心数据抽象,具备以下特性:

弹性:支持自动容错、数据分片调整及计算重试。

不可变:只能通过转换操作生成新RDD,确保数据一致性。

分布式与并行:数据分片存储于集群,各分区并行计算。

核心属性:

  1. 分区列表:数据分片实现分布式计算。

  2. 依赖关系:窄依赖(父分区仅被子分区一对一依赖)与宽依赖(引发Shuffle,如GroupByKey)。

  3. 分区器:决定数据分布,支持Hash与Range分区。

执行优化:

持久化:通过`cache()`或`persist()`缓存中间结果,减少重复计算。

检查点(Checkpoint):将RDD写入HDFS等可靠存储,切断血缘依赖以降低容错成本。

三、任务划分与调度

Spark任务层级为:

Application:一个SparkContext对应一个应用。

Job:由Action算子触发。

Stage:根据宽依赖划分,DAG调度核心单元。

Task:Stage内最后一个RDD的分区数决定Task数量,并行执行。

总结

Spark通过Master-Slave架构实现高效资源调度,而RDD的弹性与不可变性则为复杂计算提供可靠基础。理解Driver-Executor协作机制及RDD的血缘依赖、持久化策略,是优化Spark应用性能的关键。无论是批处理还是实时计算,掌握这些核心概念都能帮助开发者更好地驾驭Spark的强大能力。

相关推荐
工藤学编程9 分钟前
零基础学AI大模型之LangChain智能体执行引擎AgentExecutor
人工智能·langchain
图生生13 分钟前
基于AI的商品场景图批量生成方案,助力电商大促效率翻倍
人工智能·ai
说私域14 分钟前
短视频私域流量池的变现路径创新:基于AI智能名片链动2+1模式S2B2C商城小程序的实践研究
大数据·人工智能·小程序
yugi98783817 分钟前
用于图像分类的EMAP:概念、实现与工具支持
人工智能·计算机视觉·分类
aigcapi20 分钟前
AI搜索排名提升:GEO优化如何成为企业增长新引擎
人工智能
彼岸花开了吗26 分钟前
构建AI智能体:八十、SVD知识整理与降维:从数据混沌到语义秩序的智能转换
人工智能·python·llm
MM_MS26 分钟前
Halcon图像锐化和图像增强、窗口的相关算子
大数据·图像处理·人工智能·opencv·算法·计算机视觉·视觉检测
韩师傅32 分钟前
前端开发消亡史:AI也无法掩盖没有设计创造力的真相
前端·人工智能·后端
AI大佬的小弟34 分钟前
【小白第一课】大模型基础知识(1)---大模型到底是啥?
人工智能·自然语言处理·开源·大模型基础·大模型分类·什么是大模型·国内外主流大模型
山土成旧客39 分钟前
【Python学习打卡-Day40】从“能跑就行”到“工程标准”:PyTorch训练与测试的规范化写法
pytorch·python·学习