图神经网络+多模态:视频动作分割的轻量高效新解法

一、 引言

在智能监控、自动驾驶、人机交互等领域,准确理解视频中的动作序列至关重要。然而,传统方法依赖复杂的视觉模型,计算成本高且难以捕捉长时依赖。近期,一项名为 Semantic2Graph 的研究通过图神经网络(GNN)和多模态特征融合,在视频动作分割任务中取得了显著突破,甚至超越现有最优模型!

二、 传统方法的痛点

传统视频动作分割模型(如3D-CNN、Transformer)通常需要堆叠深层网络或引入注意力机制来提取时空特征。这些方法虽然有效,但存在两大问题:

  1. 计算成本高:长视频处理需要大量计算资源。

  2. 长时依赖建模难:相邻帧的关系容易捕捉,但跨越多帧的语义关联(如"切菜"与"装盘")难以建模。

而 Semantic2Graph 另辟蹊径,将视频转化为图结构,用"节点分类"替代传统序列建模,大幅降低了计算复杂度。

、Semantic2Graph的核心创新

  1. 视频变图:三类边捕捉精细关系
  • 时间边(Temporal Edges):连接相邻帧节点,保留时间顺序。

  • 语义边(Semantic Edges):根据动作标签的相似性,跨帧连接相同或不同动作的节点。例如,所有"切菜"帧通过语义边直接关联,无需逐帧传递信息。

  • 自循环边(Self-Loop):保留节点自身特征,防止信息丢失。

  1. 多模态特征融合:视觉+结构+语义
  • 视觉特征:通过I3D模型提取RGB和光流信息。

  • 结构特征:利用Node2Vec编码节点邻域关系。

  • 语义特征:基于文本提示(如"切菜"扩展为"人类正在切菜的视频"),通过CLIP模型生成语义嵌入。

三类特征拼接后输入GNN,实现高效融合。

、实验结果:全面超越SOTA

在 GTEA 和 50Salads 两个经典数据集上,Semantic2Graph的表现亮眼:

  • 准确率(Acc):GTEA达89.8%,50Salads达88.6%,比主流模型(如ASFormer、Bridge-Prompt)提升约10%。

  • 计算效率:模型参数量仅0.27M,推理速度达0.98ms/帧,比传统视觉模型快20%以上。

、实际应用与未来展望

  • 智能监控:实时识别异常动作(如跌倒、打架)。

  • 自动驾驶:精准理解行人意图,提升决策安全性。

  • 人机交互:让机器人更自然地模仿人类动作序列。

未来,研究团队计划将Semantic2Graph扩展至动作验证、子图提取等任务,并探索动态图构建以适应复杂场景。

六、 结语

Semantic2Graph通过"以图代序"的创新思路,为视频理解提供了轻量高效的解决方案。随着多模态技术与图神经网络的深度结合,AI对动态世界的感知能力将迈上新台阶。

论文链接

https://arxiv.org/pdf/2503.19589

相关推荐
DisonTangor2 分钟前
LLaMA-Omni 2:基于 LLM 的自回归流语音合成实时口语聊天机器人
人工智能·开源·aigc·音视频·llama
晓131320 分钟前
第四章 OpenCV篇—图像梯度与边缘检测—Python
人工智能·python·opencv·计算机视觉·pycharm
tuan_zhang26 分钟前
西门子Industrial Copilot深度解析:工业智能的技术攻坚与生态重构
人工智能·copilot·工业软件
蹦蹦跳跳真可爱58935 分钟前
Python----神经网络(《Going deeper with convolutions》论文解读和GoogLeNet网络)
网络·人工智能·pytorch·python·神经网络
urhero1 小时前
Python+ffmpeg 实现给视频添加字幕
ffmpeg·音视频·python编程·视频编辑·实用视频工具·添加字幕
虹科网络安全1 小时前
艾体宝方案丨深度解析生成式 AI 安全风险,Lepide 为数据安全护航
人工智能·aigc·ai监控·lepide·ai安全风险
shao9185161 小时前
Gradio全解20——Streaming:流式传输的多媒体应用(6)——RT-DETR模型构建视频流目标检测系统
人工智能·gradio·streaming·rt-detr·视频流目标检测·rt-detrv2
周周记笔记1 小时前
【统计学基础】随机抽样的特点
人工智能
天天爱吃肉82181 小时前
机器学习经典算法:用决策树原理优化新能源汽车续航能力
算法·决策树·机器学习
金融小师妹1 小时前
AI技术视角:美联储信号与黄金动态的量化研究——基于多模态数据分析框架
大数据·人工智能·算法