Python 几种将数据插入到数据库的方法(单行插入、批量插入,SQL Server、MySQL,insert into)

Python 几种将数据插入到数据库的方法(单行插入、批量插入,SQL Server、MySQL,insert into)

常见的四种插入方式:

一、单行插入(构造insert into代码)

二、批量插入(构造insert into代码)

三、巨量分批次插入(构造insert into代码)

四、pandas.DataFrame插入(支持单行和批量)

示例数据

python 复制代码
columnsName = [
    "SKU", "endCategoryName", "endCategoryID",
    "rootCategoryName", "rootCategoryID", "CategoryTreeName", "CategoryTreeID"
]

# 定义值列表
valueList = [
    [19417978, "Nail Art Tools", 107876, "Health & Beauty", 26395,
     "Health & Beauty>>Nail Care, Manicure & Pedicure>>Nail Art>>Nail Art Tools", "26395>>47945>>260764>>107876"],
    [19418353, "Other Fitness, Running & Yoga", 13362, "Sporting Goods", 888,
     "Sporting Goods>>Fitness, Running & Yoga>>Other Fitness, Running & Yoga", "888>>15273>>13362"],
    [19418070, "Flags", 43533, "Garden & Patio", 159912, "Garden & Patio>>Décor>>Flags", "159912>>20498>>43533"],
    [19417996, "Knitting Needles", 71215, "Crafts", 14339,
     "Crafts>>Needlecrafts & Yarn>>Crocheting & Knitting>>Knitting Needles", "14339>>160706>>3094>>71215"],
    [19418048, "Binders & Notebooks", 102950, "Home, Furniture & DIY", 11700,
     "Home, Furniture & DIY>>Stationery & School Equipment>>Binders & Notebooks", "11700>>16092>>102950"]
]

零、构造插入引擎的方法

python 复制代码
from sqlalchemy import create_engine
# 将特殊字符转成URL编码。若密码中存在特殊字符,则需要先进行URL编码再传入。没有特殊字符可以不用。
from urllib.parse import quote_plus
# pandas.DataFrame用到
import pandas as pd
# 批量插入用到text
from sqlalchemy import text


def myEngine():
	# driver='mysql'	# MySQL的插入驱动
	driver='mssql'		# SQL Server的插入驱动
	host='10.10.13.11'
	port=1433
	user='testUser'
	password='testUserPassword'
	database='testDatabase'
	charset='UTF-8'
	if driver == 'mysql':
		conn_str = (
			f"mysql+pymysql://{user}:{password}@{host}:{port}/{database}?charset='utf8mb4'"
		)
	elif driver == 'mssql':
		conn_str = (
			f"mssql+pymssql://{user}:{password}@{host}:{port}/{database}?charset='UTF-8'"
		)
	else:
		raise ValueError("Unsupported driver")
	engine = create_engine(conn_str, pool_pre_ping=True)
	return engine

一、单行插入(构造insert into代码)

通过构造insert into代码插入,用 %s 做占位符,在execute方法中将列表数值作为输入参数。
比较灵活,只适合单行插入

python 复制代码
def insert_Test_OneByOne():
    engine = myEngine()
    tableName = 'test_table'
    # values = [1478549, "Nail Art Tools", 107876, "Health & Beauty", 26395
    #     , "Health & Beauty>>Nail Care, Manicure & Pedicure>>Nail Art>>Nail Art Tools", "26395>>47945>>260764>>107876"]
    values = valueList[0]
    sql = f"""
                INSERT INTO {tableName} (
                    SKU, endCategoryName, endCategoryID, rootCategoryName, rootCategoryID, 
                    CategoryTreeName, CategoryTreeID
                ) VALUES (%s, %s, %s, %s, %s, %s, %s)
                """
    # 执行插入操作
    try:
        with engine.connect() as connection:
            connection.execute(sql, values)
        print("数据插入成功!")
    except Exception as e:
        print(f"插入失败:{str(e)}")

二、批量插入(构造insert into代码)

通过构造insert into代码插入,用 :parameter 做占位符,在execute方法中用 text 装饰插入语句,将列表数值作为输入参数。
比较灵活,适合小批量插入。构造相对麻烦。

python 复制代码
def insert_Test_ManyByOne():
    # 小批量插入
    engine = myEngine()
    tableName = 'test_table'
    sql = f"""
        INSERT INTO {tableName} (
           SKU, endCategoryName, endCategoryID, rootCategoryName, rootCategoryID, 
                    CategoryTreeName, CategoryTreeID
        ) VALUES (
            :sku, :end_name, :end_id, :root_name, :root_id, :tree_name, :tree_id
        )
    """
    try:
        with engine.connect() as connection:
            connection.execute(text(sql), [
                {
                    "sku": row[0],
                    "end_name": row[1],
                    "end_id": row[2],
                    "root_name": row[3],
                    "root_id": row[4],
                    "tree_name": row[5],
                    "tree_id": row[6]
                }
                for row in valueList  # values 应为包含元组的可迭代对象
            ])
        print("数据插入成功!")
    except Exception as e:
        print(f"插入失败:{str(e)}")

三、巨量分批次插入(构造insert into代码)

基本思路是多批次的小批量插入。
比较灵活,适合小批量插入。构造相对麻烦。

python 复制代码
def insert_Test_SoManyByOne(longValueList, batchSize=100):
    # 大量数据的分批插入
    # 注:占位符和插入的参数名需要一一对应。
    engine = myEngine()
    tableName = 'test_table'
    sql = f"""
        INSERT INTO {tableName} (
           SKU, endCategoryName, endCategoryID, rootCategoryName, rootCategoryID, 
                    CategoryTreeName, CategoryTreeID
        ) VALUES (
            :sku, :end_name, :end_id, :root_name, :root_id, :tree_name, :tree_id
        )
    """
    for i in range(0, len(longValueList), batchSize):
        batchList = longValueList[i:i + batchSize]
        try:
            with engine.connect() as connection:
                connection.execute(text(sql), [
                    {
                        "sku": row[0],
                        "end_name": row[1],
                        "end_id": row[2],
                        "root_name": row[3],
                        "root_id": row[4],
                        "tree_name": row[5],
                        "tree_id": row[6]
                    }
                    for row in batchList  # values 应为包含元组的可迭代对象
                ])
            print(f"已提交批次 {i // batchSize + 1}/{(len(longValueList) + batchSize-1) // batchSize}")
        except Exception as e:
            print(f"插入失败:{str(e)}")

四、pandas.DataFrame插入(支持单行和批量)

基本思路是多批次的小批量插入。
小批量插入,构造容易。
整批插入,报错会整批失败。

python 复制代码
def insert_Test_ByDataFrame():
    # 定义列名
    dataDF = pd.DataFrame(valueList, columns=columnsName)
    engine = myEngine()
    tableName = 'test_table'
    try:
        dataDF.to_sql(tableName, con=engine, if_exists='append', index=False)
        print("数据插入成功!")
    except Exception as e:
        print(f"插入失败:{str(e)}")

附录:代码合集

python 复制代码
#!/usr/bin/env python3
# -*- coding:utf-8 -*-
# Author:Windshield
# Date: 2023/2/6 15:52
# fileName: test.py
from sqlalchemy import create_engine
# 将特殊字符转成URL编码。若密码中存在特殊字符,则需要先进行URL编码再传入。没有可以不需要。
from urllib.parse import quote_plus
import pandas as pd
# 批量插入需要用到text
from sqlalchemy import text


def myEngine():
	# driver='mysql'	# MySQL的插入驱动
	driver='mssql'		# SQL Server的插入驱动
	host='10.10.13.11'
	port=1433
	user='testUser'
	password='testUserPassword'
	database='testDatabase'
	charset='UTF-8'
	if driver == 'mysql':
		conn_str = (
			f"mysql+pymysql://{user}:{password}@{host}:{port}/{database}?charset='utf8mb4'"
		)
	elif driver == 'mssql':
		conn_str = (
			f"mssql+pymssql://{user}:{password}@{host}:{port}/{database}?charset='UTF-8'"
		)
	else:
		raise ValueError("Unsupported driver")
	engine = create_engine(conn_str, pool_pre_ping=True)
	return engine


def insert_Test_OneByOne():
    engine = myEngine()
    tableName = 'test_table'
    # values = [1478549, "Nail Art Tools", 107876, "Health & Beauty", 26395
    #     , "Health & Beauty>>Nail Care, Manicure & Pedicure>>Nail Art>>Nail Art Tools", "26395>>47945>>260764>>107876"]
    values = valueList[0]
    sql = f"""
                INSERT INTO {tableName} (
                    SKU, endCategoryName, endCategoryID, rootCategoryName, rootCategoryID, 
                    CategoryTreeName, CategoryTreeID
                ) VALUES (%s, %s, %s, %s, %s, %s, %s)
                """
    # 执行插入操作
    try:
        with engine.connect() as connection:
            connection.execute(sql, values)
        print("数据插入成功!")
    except Exception as e:
        print(f"插入失败:{str(e)}")


def insert_Test_ManyByOne():
    # 小批量插入
    engine = myEngine()
    tableName = 'test_table'
    sql = f"""
        INSERT INTO {tableName} (
           SKU, endCategoryName, endCategoryID, rootCategoryName, rootCategoryID, 
                    CategoryTreeName, CategoryTreeID
        ) VALUES (
            :sku, :end_name, :end_id, :root_name, :root_id, :tree_name, :tree_id
        )
    """
    try:
        with engine.connect() as connection:
            connection.execute(text(sql), [
                {
                    "sku": row[0],
                    "end_name": row[1],
                    "end_id": row[2],
                    "root_name": row[3],
                    "root_id": row[4],
                    "tree_name": row[5],
                    "tree_id": row[6]
                }
                for row in valueList  # values 应为包含元组的可迭代对象
            ])
        print("数据插入成功!")
    except Exception as e:
        print(f"插入失败:{str(e)}")


def insert_Test_SoManyByOne(longValueList, batchSize=100):
    # 大量数据的分批插入
    # 注:占位符和插入的参数名需要一一对应。
    engine = myEngine()
    tableName = 'test_table'
    sql = f"""
        INSERT INTO {tableName} (
           SKU, endCategoryName, endCategoryID, rootCategoryName, rootCategoryID, 
                    CategoryTreeName, CategoryTreeID
        ) VALUES (
            :sku, :end_name, :end_id, :root_name, :root_id, :tree_name, :tree_id
        )
    """
    for i in range(0, len(longValueList), batchSize):
        batchList = longValueList[i:i + batchSize]
        try:
            with engine.connect() as connection:
                connection.execute(text(sql), [
                    {
                        "sku": row[0],
                        "end_name": row[1],
                        "end_id": row[2],
                        "root_name": row[3],
                        "root_id": row[4],
                        "tree_name": row[5],
                        "tree_id": row[6]
                    }
                    for row in batchList  # values 应为包含元组的可迭代对象
                ])
            print(f"已提交批次 {i // batchSize + 1}/{(len(longValueList) + batchSize-1) // batchSize}")
        except Exception as e:
            print(f"插入失败:{str(e)}")


def insert_Test_ByDataFrame():
    # 定义列名
    dataDF = pd.DataFrame(valueList, columns=columnsName)
    engine = myEngine()
    tableName = 'test_table'
    try:
        dataDF.to_sql(tableName, con=engine, if_exists='append', index=False)
        print("数据插入成功!")
    except Exception as e:
        print(f"插入失败:{str(e)}")


columnsName = [
    "SKU", "endCategoryName", "endCategoryID",
    "rootCategoryName", "rootCategoryID", "CategoryTreeName", "CategoryTreeID"
]

# 定义值列表
valueList = [
    [19417978, "Nail Art Tools", 107876, "Health & Beauty", 26395,
     "Health & Beauty>>Nail Care, Manicure & Pedicure>>Nail Art>>Nail Art Tools", "26395>>47945>>260764>>107876"],
    [19418353, "Other Fitness, Running & Yoga", 13362, "Sporting Goods", 888,
     "Sporting Goods>>Fitness, Running & Yoga>>Other Fitness, Running & Yoga", "888>>15273>>13362"],
    [19418070, "Flags", 43533, "Garden & Patio", 159912, "Garden & Patio>>Décor>>Flags", "159912>>20498>>43533"],
    [19417996, "Knitting Needles", 71215, "Crafts", 14339,
     "Crafts>>Needlecrafts & Yarn>>Crocheting & Knitting>>Knitting Needles", "14339>>160706>>3094>>71215"],
    [19418048, "Binders & Notebooks", 102950, "Home, Furniture & DIY", 11700,
     "Home, Furniture & DIY>>Stationery & School Equipment>>Binders & Notebooks", "11700>>16092>>102950"]
]


if __name__ == '__main__':
    pass
相关推荐
人工智能训练1 天前
【极速部署】Ubuntu24.04+CUDA13.0 玩转 VLLM 0.15.0:预编译 Wheel 包 GPU 版安装全攻略
运维·前端·人工智能·python·ai编程·cuda·vllm
yaoming1681 天前
python性能优化方案研究
python·性能优化
_F_y1 天前
MySQL用C/C++连接
c语言·c++·mysql
pengdott1 天前
Oracle RAC内存融合技术深度解析:集群性能的幕后引擎
数据库·oracle
码云数智-大飞1 天前
使用 Python 高效提取 PDF 中的表格数据并导出为 TXT 或 Excel
python
csudata1 天前
绿色便携版PostgreSQL发行版重磅发布
数据库·postgresql
阳光九叶草LXGZXJ1 天前
达梦数据库-学习-48-DmDrs控制台命令(同步之Manager、CPT模块)
linux·运维·数据库·sql·学习
五岳1 天前
DTS按业务场景批量迁移阿里云MySQL库实战(上):技术选型和API对接
mysql·阿里云·dts
我科绝伦(Huanhuan Zhou)1 天前
脚本再升级,兼容Oracle 26ai一键安装
数据库·oracle
biuyyyxxx1 天前
Python自动化办公学习笔记(一) 工具安装&教程
笔记·python·学习·自动化