处理Excel表不等长时间序列用tsfresh提取时序特征

我原本的时间序列格式是excel表记录的,每一行是一条时间序列,时间序列不等长。

要把excel表数据读取出来之后转换成extract_features需要的格式。

1.读取excel表数据

python 复制代码
import pandas as pd
import numpy as np
from tsfresh import extract_features
mdata = pd.read_excel('文件位置',header = None)
"读取出来的dataframe中每一行是一个时间序列,不满足要求,要进行行列转置"
transposed = mdata.transpose()

2.把dataframe数据格式转换成extract_features需要的格式

python 复制代码
def convert_to_extract_df(dataframe:pd.DataFrame):
    """把dataframe格式转变为extract_features需要的格式"""
    covert_df = pd.DataFrame(columns=['value', 'id'])
    for _col, col_series in dataframe.iteritems():
        col_ser = col_series.dropna()#把nan值去掉
        _col_df = pd.DataFrame(data=[col_ser.values]).T
        _col_df.columns = ['value']
        _col_df['id'] = _col
        covert_df = pd.concat([covert_df, _col_df], axis=0, ignore_index=True)
    covert_df['value'] = covert_df['value'].astype("float")
    return covert_df

3.接下来就可以直接调用extract_features函数了。

python 复制代码
cdf = convert_to_extract_df(transposed)
ext_feature = extract_features(cdf, column_id="id")
相关推荐
xw337340956430 分钟前
彩色转灰度的核心逻辑:三种经典方法及原理对比
人工智能·python·深度学习·opencv·计算机视觉
倔强青铜三34 分钟前
为什么 self 与 super() 成了 Python 的永恒痛点?
人工智能·python·面试
墨尘游子37 分钟前
目标导向的强化学习:问题定义与 HER 算法详解—强化学习(19)
人工智能·python·算法
小白学大数据2 小时前
基于Python的新闻爬虫:实时追踪行业动态
开发语言·爬虫·python
freed_Day2 小时前
python面向对象编程详解
开发语言·python
UrbanJazzerati2 小时前
Excel 神器 COUNTIFS 函数详解:多条件计数实战
excel
普郎特2 小时前
张三:从泥水匠到包工头的故事 *—— 深入浅出讲解 `run_in_executor()` 的工作原理*
python
我要学习别拦我~2 小时前
kaggle分析项目:steam付费游戏数据分析
python·游戏·数据分析
大模型真好玩2 小时前
深入浅出LangChain AI Agent智能体开发教程(四)—LangChain记忆存储与多轮对话机器人搭建
前端·人工智能·python
love530love2 小时前
命令行创建 UV 环境及本地化实战演示—— 基于《Python 多版本与开发环境治理架构设计》的最佳实践
开发语言·人工智能·windows·python·conda·uv