一、环境准备与依赖安装
1.1 系统
- 硬件: GPU NVIDIA 3070加速模型推理,内存64GB
- 软件 :
- Python 3.11
- Docker 28.04(用于容器化部署)
- Kubernetes 1.25(可选,用于集群管理)
1.2 安装 ADK 工具链
bash
# 安装 Google ADK Python SDK
pip install google-adk
# 安装依赖库
pip install tensorflow-serving-api==2.13.0 \
torch==2.1.0+cu121 \
pinecone-client==2.2.0
1.3 初始化项目结构
bash
mkdir my_agent_project && cd my_agent_project
adk init --template=multi-agent # 选择多智能体模板
二、智能体开发核心步骤
2.1 定义智能体能力(Agent Card)
创建 agent_card.json
:
json
{
"name": "financial-analyzer",
"version": "v1.0.0",
"description": "金融数据分析智能体,支持财报分析、风险评估",
"skills": ["financial-report", "risk-assessment", "market-trend"],
"endpoints": {
"query": "http://localhost:8080/query",
"stream": "http://localhost:8080/stream"
},
"authentication": {
"type": "oauth2",
"client_id": "your_client_id",
"scopes": ["financial-data:read"]
}
}
2.2 实现智能体逻辑(Python 代码)
python
# agents/financial_analyzer.py
from google.adk.agents import Agent
from google.adk.tasks import Task
from google.adk.memory import LongTermMemory
class FinancialAnalyzer(Agent):
def __init__(self):
super().__init__(name="financial-analyzer")
self.memory = LongTermMemory(pinecone_api_key="your_pinecone_key")
self.models = {
"risk_model": load_model("models/risk_assessment.pth"),
"trend_model": load_model("models/market_trend.pth")
}
async def handle_task(self, task: Task):
# 处理用户请求
if task.type == "financial-report":
return await self.analyze_financial_report(task.payload)
elif task.type == "risk-assessment":
return await self.assess_risk(task.payload)
async def analyze_financial_report(self, data: dict):
# 调用外部 API 获取财报数据
financial_data = await self.invoke_tool("fetch-financial-data", data)
# 模型推理
analysis = self.models["risk_model"].predict(financial_data)
# 存储到长期记忆
self.memory.save("financial-analysis", analysis)
return analysis
async def assess_risk(self, data: dict):
# 结合历史分析结果
history = self.memory.retrieve("financial-analysis")
# 多模型融合
risk_score = self.models["trend_model"].predict({**data, **history})
return {"risk_score": risk_score}
2.3 配置工具链
在 toolchain.yaml
中定义工具:
yaml
tools:
- name: fetch-financial-data
type: api
endpoint: https://api.finance.com/report
method: POST
headers:
Authorization: Bearer ${FINANCE_API_KEY}
三、多智能体协同开发
3.1 定义任务流程(BPMN 2.0)
使用 FlowStudio 设计工作流:
bpmn
<process id="financial-workflow">
<startEvent id="start"/>
<sequenceFlow sourceRef="start" targetRef="analyze-report"/>
<serviceTask id="analyze-report" name="分析财报"
agentRef="financial-analyzer"
taskType="financial-report"/>
<sequenceFlow sourceRef="analyze-report" targetRef="assess-risk"/>
<serviceTask id="assess-risk" name="风险评估"
agentRef="financial-analyzer"
taskType="risk-assessment"/>
<endEvent id="end"/>
</process>
3.2 实现任务编排
python
# workflows/financial_workflow.py
from google.adk.orchestration import WorkflowEngine
class FinancialWorkflow(WorkflowEngine):
def __init__(self):
super().__init__(name="financial-workflow")
self.register_agent("financial-analyzer", FinancialAnalyzer())
async def execute(self, user_request: dict):
# 启动工作流
task = Task(
type="financial-report",
payload=user_request,
workflow_id=self.id
)
result = await self.dispatch(task)
return result
四、调试与测试
4.1 本地调试
bash
# 启动本地服务
adk run --port 8080
# 测试请求
curl -X POST http://localhost:8080/query \
-H "Content-Type: application/json" \
-d '{
"query": "分析苹果公司2024年Q3财报",
"task_type": "financial-report"
}'
4.2 单元测试
python
# tests/test_financial_analyzer.py
from agents.financial_analyzer import FinancialAnalyzer
def test_financial_analysis():
agent = FinancialAnalyzer()
mock_data = {"company": "Apple", "quarter": "2024Q3"}
result = agent.analyze_financial_report(mock_data)
assert "risk_score" in result
五、性能优化
5.1 模型量化
python
# 量化模型
import tensorflow as tf
from tensorflow_model_optimization.sparsity import keras
def quantize_model(model):
converter = tf.lite.TFLiteConverter.from_keras_model(model)
converter.optimizations = [tf.lite.Optimize.DEFAULT]
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8]
converter.inference_input_type = tf.int8
converter.inference_output_type = tf.int8
quantized_model = converter.convert()
return quantized_model
5.2 硬件加速配置
yaml
# deployment/gpu_config.yaml
resources:
limits:
nvidia.com/gpu: 1
requests:
nvidia.com/gpu: 1
六、容器化部署
6.1 Dockerfile
dockerfile
FROM tensorflow/tensorflow:latest-gpu
WORKDIR /app
COPY requirements.txt .
RUN pip install -r requirements.txt
COPY . .
CMD ["adk", "serve", "--config", "config.yaml"]
6.2 Kubernetes 部署
yaml
# kubernetes/deployment.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
name: financial-agent
spec:
replicas: 3
selector:
matchLabels:
app: financial-agent
template:
metadata:
labels:
app: financial-agent
spec:
containers:
- name: financial-agent
image: financial-agent:v1.0
ports:
- containerPort: 8080
resources:
limits:
nvidia.com/gpu: 1
七、安全与合规
7.1 身份验证
python
# security/auth.py
from google.auth.transport.requests import Request
from google.oauth2 import id_token
def verify_token(token):
try:
idinfo = id_token.verify_oauth2_token(token, Request())
if idinfo["aud"] != "your_client_id":
raise ValueError("Invalid audience")
return idinfo
except ValueError:
return None
7.2 数据加密
python
# security/encryption.py
from cryptography.fernet import Fernet
class DataEncryptor:
def __init__(self, key):
self.cipher_suite = Fernet(key)
def encrypt(self, data):
return self.cipher_suite.encrypt(data.encode())
def decrypt(self, encrypted_data):
return self.cipher_suite.decrypt(encrypted_data).decode()
八、监控与运维
8.1 Prometheus 指标采集
python
# monitoring/metrics.py
from prometheus_client import Counter, Gauge
REQUESTS_TOTAL = Counter('agent_requests_total', 'Total requests processed')
LATENCY = Gauge('agent_latency_seconds', 'Request latency')
@LATENCY.time()
@REQUESTS_TOTAL.count_exceptions()
async def handle_request():
# 业务逻辑
pass
8.2 日志配置
python
# logging_config.py
import logging
from pythonjsonlogger import jsonlogger
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
handler = logging.StreamHandler()
formatter = jsonlogger.JsonFormatter(
"%(asctime)s %(levelname)s %(name)s %(message)s"
)
handler.setFormatter(formatter)
logger.addHandler(handler)
九、联邦学习集成示例
python
# federated_learning.py
import tensorflow_federated as tff
class FederatedTrainer:
def __init__(self):
self.model = create_model()
self.client_datasets = load_client_datasets()
def train(self):
iterative_process = tff.learning.build_federated_averaging_process(
model_fn=lambda: self.model,
client_optimizer_fn=lambda: tf.keras.optimizers.SGD(learning_rate=0.01)
)
state = iterative_process.initialize()
for _ in range(10):
state, metrics = iterative_process.next(state, self.client_datasets)
return state.model
十、性能测试与优化
10.1 压力测试
bash
# 使用 locust 进行压测
locust -f locustfile.py --host=http://localhost:8080
10.2 性能优化策略
优化方向 | 方法 | 预期效果 |
---|---|---|
模型推理 | 量化感知训练(QAT) | 推理速度提升3倍 |
并发处理 | 异步任务队列 | 吞吐量提升至1000 req/s |
内存管理 | 显存动态分配 | 内存占用降低40% |
网络传输 | gRPC流式传输 | 端到端延迟控制在100ms以内 |
十一、生产环境部署建议
-
高可用性:
- 使用 Kubernetes 进行自动扩缩容
- 配置多可用区部署(如 Google Cloud 区域 A/B)
-
容灾机制:
- 实现重试逻辑(最多3次)
- 配置断路器(Circuit Breaker)
-
监控告警:
- 关键指标:请求成功率(≥99.9%)、平均响应时间(≤200ms)
- 告警阈值:错误率>5% 或延迟>500ms 触发警报
-
合规认证:
- 完成 ISO/IEC 27001 认证
- 定期进行渗透测试(每季度一次)
十二、行业最佳实践
-
金融领域:
- 集成实时市场数据 API(如 Alpha Vantage)
- 实现反欺诈模型(准确率>99.5%)
-
医疗领域:
- 支持 DICOM 格式影像分析
- 联邦学习框架(如 TensorFlow Federated)保护患者隐私
-
工业领域:
- 预测性维护系统(设备故障预警准确率>95%)
- 边缘计算优化(端侧推理延迟<50ms)