Seq2Seq - 编码器(Encoder)和解码器(Decoder)

本节实现一个简单的 Seq2Seq(Sequence to Sequence)模型 的编码器(Encoder)和解码器(Decoder)部分。

重点把握Seq2Seq 模型的整体工作流程

理解编码器(Encoder)和解码器(Decoder)代码

本小节引入了nn.GRU API的调用,nn.GRU具体参数将在下一小节进行补充讲解

1. 编码器(Encoder

类定义
复制代码
class Encoder(nn.Module):
    def __init__(self, vocab_size, embedding_dim, hidden_size):
        super().__init__()
        self.emb = nn.Embedding(vocab_size, embedding_dim)
        self.rnn = nn.GRU(embedding_dim, hidden_size, batch_first=True)
  • vocab_size:输入词汇表的大小,即输入序列中可能出现的不同单词或标记的数量。

  • embedding_dim:嵌入层的维度,即每个单词或标记被映射到的向量空间的维度。

  • hidden_size:GRU(门控循环单元)的隐藏状态维度,决定了模型的内部状态大小。

主要组件
  1. 嵌入层(nn.Embedding

    • 嵌入层会将输入序列形状转换为 [batch_size, seq_len, embedding_dim] 的张量。

    • 这种映射是通过学习嵌入矩阵实现的,每个单词索引对应嵌入矩阵中的一行。

  2. GRU(nn.GRU

    • embedding_dim 是 GRU 的输入维度,hidden_size 是隐藏状态的维度。

    • batch_first=True 表示输入和输出的张量的第一个维度是批量大小(batch_size),而不是序列长度(seq_len)。

前向传播(forward
复制代码
def forward(self, x):
    embs = self.emb(x) #batch * token * embedding_dim
    gru_out, hidden = self.rnn(embs) #batch * token * hidden_size

    return gru_out, hidden
  • 输入 x 是一个形状为 [batch_size, seq_len] 的张量,表示一个批次的输入序列。

  • embs 是嵌入层的输出,形状为 [batch_size, seq_len, embedding_dim]

  • gru_out 是 GRU 的输出,形状为 [batch_size, seq_len, hidden_size],表示每个时间步的隐藏状态。

  • hidden 是 GRU 的最终隐藏状态,形状为 [1, batch_size, hidden_size],用于传递给解码器。

2. 解码器(Decoder)

类定义
复制代码
class Decoder(nn.Module):
    def __init__(self, vocab_size, embedding_dim, hidden_size):
        super().__init__()
        self.emb = nn.Embedding(vocab_size, embedding_dim)
        self.rnn = nn.GRU(embedding_dim, hidden_size, batch_first=True)
  • 解码器的结构与编码器类似,但它的作用是将编码器生成的上下文向量(hidden)解码为目标序列。
主要组件
  1. 嵌入层(nn.Embedding

    • 与编码器类似,将目标序列的单词索引映射到嵌入向量。
  2. GRU(nn.GRU

    • 与编码器中的 GRU 类似,但其输入是目标序列的嵌入向量,初始隐藏状态是编码器的最终隐藏状态。
前向传播(forward
复制代码
def forward(self, x, hx):
    embs = self.emb(x)
    gru_out, hidden = self.rnn(embs, hx=hx) #batch * token * hidden_size
    # batch * token * hidden_size
    # 1 * token * hidden_size

    return gru_out, hidden
  • 输入 x 是目标序列的单词索引,形状为 [batch_size, seq_len]

  • hx 是编码器的最终隐藏状态,形状为 [1, batch_size, hidden_size],作为解码器的初始隐藏状态。

  • embs 是目标序列的嵌入向量,形状为 [batch_size, seq_len, embedding_dim]

  • gru_out 是解码器 GRU 的输出,形状为 [batch_size, seq_len, hidden_size]

  • hidden 是解码器 GRU 的最终隐藏状态,形状为 [1, batch_size, hidden_size]

3. Seq2Seq 模型的整体工作流程⭐

  1. 编码阶段

    • 输入序列通过编码器的嵌入层,将单词索引映射为嵌入向量。

    • 嵌入向量通过 GRU,生成每个时间步的隐藏状态和最终的隐藏状态(上下文向量)。

    • 最终隐藏状态(hidden)作为编码器的输出,传递给解码器。

  2. 解码阶段

    • 解码器的初始隐藏状态是编码器的最终隐藏状态。

    • 解码器逐个生成目标序列的单词,每次生成一个单词后,将该单词的嵌入向量作为下一次输入,同时更新隐藏状态。

    • 通过这种方式,解码器逐步生成目标序列。

相关推荐
那个村的李富贵5 小时前
光影魔术师:CANN加速实时图像风格迁移,让每张照片秒变大师画作
人工智能·aigc·cann
腾讯云开发者6 小时前
“痛点”到“通点”!一份让 AI 真正落地产生真金白银的实战指南
人工智能
CareyWYR6 小时前
每周AI论文速递(260202-260206)
人工智能
hopsky7 小时前
大模型生成PPT的技术原理
人工智能
禁默8 小时前
打通 AI 与信号处理的“任督二脉”:Ascend SIP Boost 加速库深度实战
人工智能·信号处理·cann
心疼你的一切8 小时前
昇腾CANN实战落地:从智慧城市到AIGC,解锁五大行业AI应用的算力密码
数据仓库·人工智能·深度学习·aigc·智慧城市·cann
AI绘画哇哒哒8 小时前
【干货收藏】深度解析AI Agent框架:设计原理+主流选型+项目实操,一站式学习指南
人工智能·学习·ai·程序员·大模型·产品经理·转行
数据分析能量站8 小时前
Clawdbot(现名Moltbot)-现状分析
人工智能
那个村的李富贵8 小时前
CANN加速下的AIGC“即时翻译”:AI语音克隆与实时变声实战
人工智能·算法·aigc·cann
二十雨辰8 小时前
[python]-AI大模型
开发语言·人工智能·python