One-Hot标签编码方法详解

文章目录

One-Hot 标签(One-Hot Encoding)

One-Hot 标签是一种将分类变量表示为二进制向量的编码方法,在机器学习和深度学习中广泛使用。

基本概念

One-Hot 编码将类别型特征转换为机器学习算法更容易处理的数值形式。对于一个有 N 个不同类别的特征:

  • 创建一个长度为 N 的二进制向量
  • 对于每个样本,只有对应类别的位设置为 1,其他所有位都为 0

示例

假设有一个颜色类别特征,包含三种可能值:红、绿、蓝

python 复制代码
原始标签: ["红", "绿", "蓝", "绿", "红"]

One-Hot 编码后:
红 → [1, 0, 0]
绿 → [0, 1, 0]
蓝 → [0, 0, 1]

完整转换:
[
 [1, 0, 0],
 [0, 1, 0],
 [0, 0, 1],
 [0, 1, 0],
 [1, 0, 0]
]

实现方式

在Python中可以使用以下方法实现One-Hot编码:

  1. 使用scikit-learn的OneHotEncoder:
python 复制代码
from sklearn.preprocessing import OneHotEncoder
encoder = OneHotEncoder()
one_hot = encoder.fit_transform(data).toarray()
  1. 使用pandas的get_dummies:
python 复制代码
import pandas as pd
one_hot = pd.get_dummies(data)
  1. 使用Keras的to_categorical(适用于标签):
python 复制代码
from keras.utils import to_categorical
one_hot = to_categorical(labels)

应用场景

  • 分类任务的输出层(特别是多分类问题)
  • 处理非数值型分类特征
  • 需要明确类别间无顺序关系的场景

优缺点

优点

  • 不引入人为的类别间顺序关系
  • 适用于大多数机器学习算法
  • 直接可解释

缺点

  • 当类别数量很多时(高基数特征),会导致维度爆炸
  • 不适用于有序类别
  • 对于树模型可能不是最优选择

在深度学习中,One-Hot编码常用于输出层配合交叉熵损失函数使用。

相关推荐
【建模先锋】2 小时前
特征提取+概率神经网络 PNN 的轴承信号故障诊断模型
人工智能·深度学习·神经网络·信号处理·故障诊断·概率神经网络·特征提取
轲轲012 小时前
Week02 深度学习基本原理
人工智能·深度学习
smile_Iris3 小时前
Day 40 复习日
人工智能·深度学习·机器学习
深度学习实战训练营3 小时前
TransUNet:Transformer 成为医学图像分割的强大编码器,Transformer 编码器 + U-Net 解码器-k学长深度学习专栏
人工智能·深度学习·transformer
火山kim3 小时前
经典论文研读报告:DAGGER (Dataset Aggregation)
人工智能·深度学习·机器学习
Coding茶水间3 小时前
基于深度学习的水果检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·机器学习·计算机视觉
studytosky4 小时前
深度学习理论与实战:反向传播、参数初始化与优化算法全解析
人工智能·python·深度学习·算法·分类·matplotlib
@鱼香肉丝没有鱼7 小时前
Transformer底层原理—位置编码
人工智能·深度学习·transformer·位置编码
深度学习实战训练营7 小时前
HRNet:深度高分辨率表示学习用于人体姿态估计-k学长深度学习专栏
人工智能·深度学习
架构师李哲7 小时前
让智能家居“听懂人话”:我用4B模型+万条数据,教会了它理解复杂指令
深度学习·aigc