SpringAI版本更新:向量数据库不可用的解决方案!

Spring AI 前两天(4.10 日)更新了 1.0.0-M7 版本后,原来的 SimpleVectorStore 内存级别的向量数据库就不能用了,Spring AI 将其全部源码删除了。

此时我们就需要一种成本更低的解决方案来解决这个问题,如何解决呢?我们一起来看。

解决方案:Redis 向量数据库

虽然 SimpleVectorStore 不支持了,但 Spring AI 内置了 Redis 或 ES 作为向量数据库的分布式存储中间件,我们可以用他们来进行向量的存储。

而在这两种方案中,显然 Redis 使用成本更低,因此,我们来看如何将向量存储到 Redis 数据库中。

它的具体实现步骤如下。

安装Redis-Stack

  1. 下载 Docker Hubwww.docker.com/get-started...
  2. 安装 redis-stack-server:使用"docker run -d --name redis-stack-server -p 6379:6379 redis/redis-stack-server"。

添加依赖

我们使用阿里云百炼平台的嵌入模型 text-embedding-v3 是兼容 OpenAI 的 SDK 的,因此,我们需要添加 OpenAI 和 Redis Vector 依赖:

xml 复制代码
<dependency>
  <groupId>org.springframework.ai</groupId>
  <artifactId>spring-ai-starter-vector-store-redis</artifactId>
</dependency>

<dependency>
  <groupId>org.springframework.ai</groupId>
  <artifactId>spring-ai-starter-model-openai</artifactId>
</dependency>

设置配置信息

配置 Redis 连接信息,以及嵌入模型的配置信息:

yaml 复制代码
spring:
  data:
    redis:
      host: localhost
      port: 6379
  ai:
    vectorstore:
      redis:
        initialize-schema: true
        index-name: custom-index
        prefix: custom-prefix
    openai:
      api-key: ${ALIYUN-AK}
      embedding:
        options:
          model: text-embedding-v3

阿里云百炼平台支持的向量模型:

代码实现

Redis 添加向量数据

java 复制代码
@Autowired
private VectorStore vectorStore;

// 构建数据
List<Document> documents =
List.of(new Document("I like Spring Boot"),
        new Document("I love Java"));
// 添加到向量数据库
vectorStore.add(documents);

当然,向量数据的数据源可以是文件、图片、音频等资源,这里为了简单演示整体执行流程,使用了更简单直观的文本作为数据源。

VectorStore 提供的常用方法如下:

  • add(List documents) :添加文档。
  • delete(List idList) :按 ID 删除文档。
  • delete(Filter.Expression filterExpression) :按过滤表达式删除文档。
  • similaritySearch(String query) 和 similaritySearch(SearchRequest request) :相似性搜索。

执行结果如下:

查询向量数据

java 复制代码
@RestController
@RequestMapping("/vector")
public class VectorController {

    @Resource
    private VectorStore vectorStore;

    @RequestMapping("/find")
    public List find(@RequestParam String query) {
        // 构建搜索请求,设置查询文本和返回的文档数量
        SearchRequest request = SearchRequest.builder()
        .query(query)
        .topK(3)
        .build();
        List<Document> result = vectorStore.similaritySearch(request);
        System.out.println(result);
        return result;
    }
}

执行结果如下:

从上述结果可以看出,和"java"相似度最高的向量为"I love Java",相似度评分为 0.77,如果我们 SearchRequest 对象中的 topK 设置为 1 的话,只会查询"I love Java"这条数据,如下图所示:

本文已收录到我的技术小站 www.javacn.site,其中包含的内容有:Spring AI、并发编程、MySQL、Redis、Spring、Spring MVC、Spring Boot、Spring Cloud、MyBatis、JVM、设计模式、消息队列、场景题等模块。

相关推荐
TechubNews几秒前
关于我们 About Techub News
人工智能·区块链
bin91531 分钟前
AI工具赋能Python开发者:项目开发中的创意守护与效率革命
开发语言·人工智能·python·工具·ai工具
我是场3 分钟前
AI入门 - 什么是ARM SME2 AI加速指令集
arm开发·人工智能
thinktik3 分钟前
AWS EKS 计算资源自动扩缩之Karpenter[AWS 海外区]
后端·kubernetes·aws
风象南3 分钟前
告别重复编码!SpringBoot + JSON Schema 动态表单开发
后端
JaguarJack6 分钟前
PHP 异常处理全攻略 Try-Catch 从入门到精通完全指南
后端·php
lang201509286 分钟前
Spring Boot Actuator应用信息Application Information全解析
spring boot·后端·elasticsearch
paopaokaka_luck9 分钟前
基于SpringBoot+Vue的DIY手工社预约管理系统(Echarts图形化、腾讯地图API)
java·vue.js·人工智能·spring boot·后端·echarts
自在极意功。10 分钟前
贪心算法深度解析:从理论到实战的完整指南
java·算法·ios·贪心算法
出门吃三碗饭1 小时前
如何在LLM大语言模型上微调来优化数学推理能力?
android·人工智能·语言模型