深度学习3.2 线性回归的从零开始实现

3.2.1 生成数据集

python 复制代码
%matplotlib inline
import random
import torch
from d2l import torch as d2l

def synthetic_data(w, b, num_examples):
    # 生成特征矩阵X,形状为(num_examples, len(w)),符合标准正态分布
    X = torch.normal(0, 1, (num_examples, len(w)))
    # 计算标签y = Xw + b
    y = torch.matmul(X, w) + b
    # 添加均值为0、标准差为0.01的噪声
    y += torch.normal(0, 0.01, y.shape)
    # 将y转换为列向量(形状:num_examples × 1)
    return X, y.reshape((-1, 1))
python 复制代码
true_w = torch.tensor([2, -3.4])  # 定义真实权重
true_b = 4.2                      # 定义真实偏置
features, labels = synthetic_data(true_w, true_b, 1000)  # 生成1000个样本

d2l.set_figsize()
d2l.plt.scatter(features[:, 1].detach().numpy(), labels.detach().numpy(), 1)

features[:, 1]: 选取所有样本的第二个特征(索引为1的列)。

3.2.1 读取数据集

python 复制代码
def data_iter(batch_size, features, labels):
    num_examples = len(features)
    indices = list(range(num_examples))

    random.shuffle(indices)
    for i in range(0, num_examples, batch_size):
        batch_indices = torch.tensor(
            indices[i: min(i + batch_size, num_examples)])
        yield features[batch_indices], labels[batch_indices]

batch_size = 10
for X, y in data_iter(batch_size, features, labels):
    print(X, '\n', y)
    break

tensor([[ 1.6556, 0.1851],

-1.4880, 0.0684\], \[ 1.0536, 0.9818\], \[-0.7794, -1.9199\], \[-0.3383, 0.2244\], \[-0.2260, 3.1530\], \[-2.3626, 1.1877\], \[-0.3301, 0.1781\], \[-0.6136, -1.2974\], \[-0.3397, -0.2088\]\]) tensor(\[\[ 6.8888\], \[ 0.9887\], \[ 2.9757\], \[ 9.1748\], \[ 2.7541\], \[-6.9671\], \[-4.5522\], \[ 2.9436\], \[ 7.3728\], \[ 4.2270\]\])

相关推荐
All The Way North-1 分钟前
彻底掌握 RNN(实战):PyTorch API 详解、多层RNN、参数解析与输入机制
pytorch·rnn·深度学习·循环神经网络·参数详解·api详解
Li emily10 分钟前
如何通过外汇API平台快速实现实时数据接入?
开发语言·python·api·fastapi·美股
bylander14 分钟前
【AI学习】TM Forum《Autonomous Networks Implementation Guide》快速理解
人工智能·学习·智能体·自动驾驶网络
m0_5613596717 分钟前
掌握Python魔法方法(Magic Methods)
jvm·数据库·python
Ulyanov23 分钟前
顶层设计——单脉冲雷达仿真器的灵魂蓝图
python·算法·pyside·仿真系统·单脉冲
Techblog of HaoWANG34 分钟前
目标检测与跟踪 (8)- 机器人视觉窄带线激光缝隙检测系统开发
人工智能·opencv·目标检测·机器人·视觉检测·控制
laplace012340 分钟前
Claude Skills 笔记整理
人工智能·笔记·agent·rag·skills
2501_9414185542 分钟前
【计算机视觉】基于YOLO11-P6的保龄球检测与识别系统
人工智能·计算机视觉
码农三叔1 小时前
(8-3)传感器系统与信息获取:多传感器同步与传输
人工智能·机器人·人形机器人
人工小情绪1 小时前
Clawbot (OpenClaw)简介
人工智能