深度学习3.2 线性回归的从零开始实现

3.2.1 生成数据集

python 复制代码
%matplotlib inline
import random
import torch
from d2l import torch as d2l

def synthetic_data(w, b, num_examples):
    # 生成特征矩阵X,形状为(num_examples, len(w)),符合标准正态分布
    X = torch.normal(0, 1, (num_examples, len(w)))
    # 计算标签y = Xw + b
    y = torch.matmul(X, w) + b
    # 添加均值为0、标准差为0.01的噪声
    y += torch.normal(0, 0.01, y.shape)
    # 将y转换为列向量(形状:num_examples × 1)
    return X, y.reshape((-1, 1))
python 复制代码
true_w = torch.tensor([2, -3.4])  # 定义真实权重
true_b = 4.2                      # 定义真实偏置
features, labels = synthetic_data(true_w, true_b, 1000)  # 生成1000个样本

d2l.set_figsize()
d2l.plt.scatter(features[:, 1].detach().numpy(), labels.detach().numpy(), 1)

features[:, 1]: 选取所有样本的第二个特征(索引为1的列)。

3.2.1 读取数据集

python 复制代码
def data_iter(batch_size, features, labels):
    num_examples = len(features)
    indices = list(range(num_examples))

    random.shuffle(indices)
    for i in range(0, num_examples, batch_size):
        batch_indices = torch.tensor(
            indices[i: min(i + batch_size, num_examples)])
        yield features[batch_indices], labels[batch_indices]

batch_size = 10
for X, y in data_iter(batch_size, features, labels):
    print(X, '\n', y)
    break

tensor([[ 1.6556, 0.1851],

-1.4880, 0.0684\], \[ 1.0536, 0.9818\], \[-0.7794, -1.9199\], \[-0.3383, 0.2244\], \[-0.2260, 3.1530\], \[-2.3626, 1.1877\], \[-0.3301, 0.1781\], \[-0.6136, -1.2974\], \[-0.3397, -0.2088\]\]) tensor(\[\[ 6.8888\], \[ 0.9887\], \[ 2.9757\], \[ 9.1748\], \[ 2.7541\], \[-6.9671\], \[-4.5522\], \[ 2.9436\], \[ 7.3728\], \[ 4.2270\]\])

相关推荐
中年程序员一枚5 分钟前
让postman调用python的开发接口,链接sqlite数据库,让前后联动起来
数据库·python·postman
火火PM打怪中8 分钟前
空窗期的自我探索
人工智能·职场和发展
测试人社区-千羽9 分钟前
AI重塑API测试数据生成的时代背景
人工智能·测试工具·程序人生·自动化·测试覆盖率
爱写Bug的小孙15 分钟前
Tools、MCP 和 Function Calling
开发语言·人工智能·python·ai·ai编程·工具调用
rgb2gray17 分钟前
城市韧性与交通基础设施系统耦合协调度的时空演变及影响因素
网络·人工智能·python·ai·写作·耦合·耦合协调
初级炼丹师(爱说实话版)23 分钟前
大模型部署-数据并行/模型并行
人工智能·python
listhi52026 分钟前
机械系统运动学与动力学在MATLAB及SimMechanics中的实现方案
人工智能·算法·matlab
AI大模型学徒27 分钟前
大模型应用开发(十五)_知识库1
人工智能·chatgpt·大模型·llm·知识库·deepseek
音视频牛哥28 分钟前
从“十五五”到数字化转型:音视频技术在未来产业中的关键作用
人工智能·深度学习·计算机视觉·音视频·十五五规划音视频低延迟方案·十五五规划低空经济低延迟方案·rtsp rtmp播放器
测试人社区—小叶子35 分钟前
测试开发面试高频“灵魂八问”深度解析与应答策略
网络·人工智能·测试工具·云原生·容器·面试·职场和发展