深度学习3.2 线性回归的从零开始实现

3.2.1 生成数据集

python 复制代码
%matplotlib inline
import random
import torch
from d2l import torch as d2l

def synthetic_data(w, b, num_examples):
    # 生成特征矩阵X,形状为(num_examples, len(w)),符合标准正态分布
    X = torch.normal(0, 1, (num_examples, len(w)))
    # 计算标签y = Xw + b
    y = torch.matmul(X, w) + b
    # 添加均值为0、标准差为0.01的噪声
    y += torch.normal(0, 0.01, y.shape)
    # 将y转换为列向量(形状:num_examples × 1)
    return X, y.reshape((-1, 1))
python 复制代码
true_w = torch.tensor([2, -3.4])  # 定义真实权重
true_b = 4.2                      # 定义真实偏置
features, labels = synthetic_data(true_w, true_b, 1000)  # 生成1000个样本

d2l.set_figsize()
d2l.plt.scatter(features[:, 1].detach().numpy(), labels.detach().numpy(), 1)

features[:, 1]: 选取所有样本的第二个特征(索引为1的列)。

3.2.1 读取数据集

python 复制代码
def data_iter(batch_size, features, labels):
    num_examples = len(features)
    indices = list(range(num_examples))

    random.shuffle(indices)
    for i in range(0, num_examples, batch_size):
        batch_indices = torch.tensor(
            indices[i: min(i + batch_size, num_examples)])
        yield features[batch_indices], labels[batch_indices]

batch_size = 10
for X, y in data_iter(batch_size, features, labels):
    print(X, '\n', y)
    break

tensor([[ 1.6556, 0.1851],

-1.4880, 0.0684\], \[ 1.0536, 0.9818\], \[-0.7794, -1.9199\], \[-0.3383, 0.2244\], \[-0.2260, 3.1530\], \[-2.3626, 1.1877\], \[-0.3301, 0.1781\], \[-0.6136, -1.2974\], \[-0.3397, -0.2088\]\]) tensor(\[\[ 6.8888\], \[ 0.9887\], \[ 2.9757\], \[ 9.1748\], \[ 2.7541\], \[-6.9671\], \[-4.5522\], \[ 2.9436\], \[ 7.3728\], \[ 4.2270\]\])

相关推荐
UI设计兰亭妙微3 分钟前
人工智能大模型管理平台UI设计
人工智能
发哥来了6 分钟前
主流AI视频生成商用方案选型评测:五大核心维度对比分析
大数据·人工智能
物联网APP开发从业者7 分钟前
2026年AI智能产品开发行业十大创新解决方案
人工智能
badfl21 分钟前
VSCode Claude Code插件配置教程:使用、配置中转API、常见问题
人工智能·vscode·ai
福大大架构师每日一题35 分钟前
ComfyUI v0.11.1正式发布:新增开发者专属节点支持、API节点强化、Python 3.14兼容性更新等全方位优化!
开发语言·python
Faker66363aaa1 小时前
指纹过滤器缺陷检测与分类 —— 基于MS-RCNN_X101-64x4d_FPN_1x_COCO模型的实现与分析_1
人工智能·目标跟踪·分类
金融小师妹1 小时前
基于LSTM-GARCH-EVT混合模型的贵金属极端波动解析:黄金白银双双反弹的逻辑验证
大数据·人工智能·深度学习·机器学习
代码匠心1 小时前
Trae IDE 隐藏玩法:接入即梦 AI,生成高质量大片!
人工智能·ai·trae·skills
陈天伟教授1 小时前
人工智能应用- 语言理解:01. 写作与对话
人工智能·深度学习·语音识别
铁蛋AI编程实战1 小时前
OpenClaw+Kimi K2.5开源AI助手零门槛部署教程:本地私有化+远程控制+办公自动化全实操
人工智能·开源