LeetCode每日一题4.19

2563. 统计公平数对的数目

题目

问题分析

输入:一个整数数组 nums 和两个整数 lower 和 upper。

输出:返回满足条件的公平数对的数目,即对于所有 0 <= i < j < n,lower <= nums[i] + nums[j] <= upper 的数对 (i, j) 的数量。

思路

方法一:暴力解法(时间复杂度 O(n^2))

直接遍历所有可能的数对 (i, j) 并检查它们是否满足条件。

方法二:优化解法(二分查找)

排序:首先对数组 nums 进行排序。

遍历:然后对每个 nums[i],使用 二分查找 来找到满足条件的 nums[j](其中 j > i)的范围。

二分查找:分别找到满足 nums[i] + nums[j] <= upper 的最大 j(通过 find_upper_bound)和满足 nums[i] + nums[j] >= lower 的最小 j(通过 find_lower_bound)。

代码

python 复制代码
class Solution:
    def countFairPairs(self, nums: List[int], lower: int, upper: int) -> int:
        # 对数组进行排序
        nums.sort()
        count = 0
        n = len(nums)

        for i in range(n):
            # 找到满足 nums[i] + nums[j] <= upper 的最大 j 的位置
            r = self.find_upper_bound(nums, upper - nums[i], i + 1, n - 1)
            # 找到满足 nums[i] + nums[j] >= lower 的最小 j 的位置
            l = self.find_lower_bound(nums, lower - nums[i], i + 1, n - 1)
            # 统计符合条件的数对数量
            if l <= r:
                count += r - l + 1

        return count

    def find_upper_bound(self, nums, target, start, end):
        while start <= end:
            mid = (start + end) // 2
            if nums[mid] > target:
                end = mid - 1
            else:
                start = mid + 1
        return end

    def find_lower_bound(self, nums, target, start, end):
        while start <= end:
            mid = (start + end) // 2
            if nums[mid] < target:
                start = mid + 1
            else:
                end = mid - 1
        return start

复杂度分析

时间复杂度:

排序:(O(n \log n))

遍历并二分查找:(O(n \log n))

因此,最终时间复杂度为:

O(n \\log n) + O(n \\log n) = O(n \\log n)

空间复杂度:

遍历:(O(n))

学习

排序

排序是为了后续能够利用 二分查找 来高效地找到满足条件的 nums[j]。

遍历

python 复制代码
for i in range(n):
    r = self.find_upper_bound(nums, upper - nums[i], i + 1, n - 1)
    l = self.find_lower_bound(nums, lower - nums[i], i + 1, n - 1)
    if l <= r:
        count += r - l + 1

遍历每个 nums[i]:对于每个 nums[i],我们需要找到所有 j > i 且满足 lower <= nums[i] + nums[j] <= upper 的 nums[j]。

找到 r 和 l:

r 是满足 nums[i] + nums[j] <= upper 的最大 j 的位置。

l 是满足 nums[i] + nums[j] >= lower 的最小 j 的位置。

统计数对:如果 l <= r,则 l 到 r 之间的所有 j 都是符合条件的,因此数对数量为 r - l + 1。

二分查找

find_upper_bound:找到第一个大于 target 的元素的位置(返回该位置的前一个位置)。

python 复制代码
  def find_upper_bound(self, nums, target, start, end):
      while start <= end:
          mid = (start + end) // 2
          if nums[mid] > target:
              end = mid - 1
          else:
              start = mid + 1
      return end
  

find_lower_bound:找到第一个不小于 target 的元素的位置。

python 复制代码
  def find_lower_bound(self, nums, target, start, end):
      while start <= end:
          mid = (start + end) // 2
          if nums[mid] < target:
              start = mid + 1
          else:
              end = mid - 1
      return start
  

与相向双指针方法的区别

相向双指针方法 的典型特点是:

两个指针从两端向中间移动:一个指针从数组的起始位置开始(left),另一个指针从数组的末尾位置开始(right)。

根据当前 nums[left] + nums[right] 的值来决定移动哪个指针:

如果当前和小于 lower,则 left 指针右移。

如果当前和大于 upper,则 right 指针左移。

如果当前和在 [lower, upper] 范围内,则统计符合条件的数对并调整指针。

相关推荐
C++ 老炮儿的技术栈18 分钟前
UDP 与 TCP 的区别是什么?
开发语言·c++·windows·算法·visual studio
殇者知忧20 分钟前
【论文笔记】若干矿井粉尘检测算法概述
深度学习·神经网络·算法·随机森林·机器学习·支持向量机·计算机视觉
mochensage2 小时前
C++信息学竞赛中常用函数的一般用法
java·c++·算法
chengooooooo2 小时前
leetcode Top100 238. 除自身以外数组的乘积|数组系列
算法·leetcode
GUIQU.2 小时前
【每日一题 | 2025年6.2 ~ 6.8】第16届蓝桥杯部分偏简单题
算法·蓝桥杯·每日一题
weixin_527550403 小时前
初级程序员入门指南
javascript·python·算法
嘉陵妹妹5 小时前
深度优先算法学习
学习·算法·深度优先
GalaxyPokemon5 小时前
LeetCode - 53. 最大子数组和
算法·leetcode·职场和发展
hn小菜鸡6 小时前
LeetCode 1356.根据数字二进制下1的数目排序
数据结构·算法·leetcode
zhuiQiuMX6 小时前
分享今天做的力扣SQL题
sql·算法·leetcode