[图论]Kruskal

Kruskal

  • 本质:贪心,对边进行操作
  • 存储结构:边集数组。
  • 适用对象:可为负权图,可求最大生成树。
  • 核心思想:最短的边一定在最小生成树(MST)上,对最短的边进行贪心。
  • 算法流程:对全体边集 {   E   } \set{E} {E}由小到大排序。遍历所有边,每次添加使已选边集不成环的边,直到已选 V − 1 V-1 V−1条边。可使用并查集判环,每次加边前先判断两点是否同属一个集合,每次加边时将两点合并到一个集合。
  • 复杂度: O ( E log ⁡ 2 E ) O(E\log_2E) O(Elog2E)

注:若无特殊说明,本文顶点与边编号均从0开始。

数据结构定义

cpp 复制代码
using ll=long long;
ll n,m,s;//点数,边数,源点
struct edge{
    int u,v,w;
}e[m];
bool cmp(edge a,edge b){
    return a.w<b.w;
}
int s[n];
int Find(int x){
    if(s[x]!=x) s[x]=Find(s[x]);
    return s[x];
}
void init(){
    for(int i=0;i<n;i++) s[i]=i;
}

实现

cpp 复制代码
int kruskal(){
    sort(e,e+m,cmp);
    init();
    int ans=0,cnt=0;
    for(int i=0;i<m;i++){
        if(cnt==n-1) break;
        int U=e[i].u,V=e[i].v,W=e[i].w;
        int u1=Find(U),u2=Find(V);
        if(u1==u2) continue;//成环,不选当前边
        else{
            ans+=W;
            s[u1]=u2;//合并到一个集合
            cnt++;
        }
    }
    if(cnt==n-1) return ans;
    return -1;
}

若求最大生成树,改为对边集 {   E   } \set{E} {E}由大到小排序即可。

相关推荐
Snow_day.15 小时前
有关排列排列组合(1)
数据结构·算法·贪心算法·动态规划·图论
初晴や2 天前
【C++】图论:基础理论与实际应用深入解析
c++·算法·图论
闻缺陷则喜何志丹2 天前
【图论 DFS 换根法】3772. 子图的最大得分|2235
c++·算法·深度优先·力扣·图论·换根法
君义_noip3 天前
信息学奥赛一本通 2134:【25CSPS提高组】道路修复 | 洛谷 P14362 [CSP-S 2025] 道路修复
c++·算法·图论·信息学奥赛·csp-s
罗湖老棍子3 天前
信使(msner)(信息学奥赛一本通- P1376)四种做法
算法·图论·dijkstra·spfa·floyd·最短路算法
修炼地4 天前
代码随想录算法训练营第五十三天 | 卡码网97. 小明逛公园(Floyd 算法)、卡码网127. 骑士的攻击(A * 算法)、最短路算法总结、图论总结
c++·算法·图论
罗湖老棍子4 天前
【例4-6】香甜的黄油(信息学奥赛一本通- P1345)
算法·图论·dijkstra·floyd·最短路算法·bellman ford
--JR6 天前
015——图(1.图的相关概念与存储)
数据结构·c++·算法·链表·图论
闻缺陷则喜何志丹6 天前
【二分查找 图论】P10206 [JOI 2024 Final] 建设工程 2|普及+
c++·算法·二分查找·图论·洛谷
surtr18 天前
全源最短路封装模板(APSP,Floyd求最小环,Floyd求最短路,Johnson算法)
c++·算法·数学建模·动态规划·图论