【NLP 69、KG - BERT】

人们总是在无能为力的时候喜欢说顺其自然

------ 25.4.21

一、KG-BERT:基于BERT的知识图谱补全模型

1.模型结构与设计

Ⅰ、核心思想

将知识图谱中的三元组(头实体-关系-尾实体)转化为文本序列,利用BERT的上下文理解能力进行知识图谱补全任务(如三元组分类、链接预测)。

Ⅱ、输入设计

① 三元组序列化

将实体和关系的名称或描述文本拼接成序列,格式为 [CLS] 头实体描述 [SEP] 关系描述 [SEP] 尾实体描述 [SEP]

实体表示灵活性

头尾实体可以是实体名本身或详细的文本描述(例如,"Steve Jobs"或"Apple Inc. is a technology company")。

Ⅲ、任务模块

① 三元组分类

通过BERT的[CLS]标记输出进行二分类(判断三元组是否成立),使用交叉熵损失。

② 关系预测

将任务调整为多分类问题,预测两个实体之间的关系。

③ 链接预测

预测缺失的实体或关系,支持知识图谱的自动补全。


2.计算方式与训练策略

Ⅰ、数据构造

① 正样本

来自知识图谱的原始三元组。

② 负样本

随机替换正样本中的头/尾实体或关系生成负例。

Ⅱ、损失函数

① 三元组分类:

二元交叉熵损失。

② 关系预测:

多类交叉熵损失。

Ⅲ、预训练与微调

基于预训练的BERT模型进行微调,无需从头训练,适配知识图谱任务。


3.应用场景

Ⅰ、智能问答

补全知识图谱中的缺失关系,提升答案准确性。

Ⅱ、推荐系统

利用实体关系增强个性化推荐。

Ⅲ、语义搜索

通过知识图谱补全优化搜索结果的语义相关性。


4.关键技术优势

Ⅰ、上下文融合

通过BERT的双向注意力机制捕捉实体和关系的深层语义关联。

Ⅱ、灵活性

支持多种知识图谱任务(分类、预测、补全)。

Ⅲ、高效性

利用预训练BERT减少训练时间,适合大规模知识图谱处理。


二、模型对比与总结

维度 KG-BERT R-BERT
核心任务 知识图谱补全(三元组分类、链接预测) 关系抽取(实体间语义关系分类)
输入设计 三元组序列化,融合实体描述文本 显式标记实体位置,提取实体向量
关键技术 BERT+知识图谱融合、负样本生成 实体标记符、多特征融合
应用领域 问答系统、推荐系统、语义搜索 社交网络分析、医学文本挖掘、事件抽取
性能指标 在WN11、FB15K等数据集达到SOTA SemEval-2010 Task 8的F1值89.25%

三、代码示例

python 复制代码
import torch
from transformers import BertTokenizer, BertForSequenceClassification


def predict_relation(text, head_entity, tail_entity, model, tokenizer):
    try:
        # 构建输入文本
        input_text = f"头实体: {head_entity} 尾实体: {tail_entity} 文本: {text}"
        # 分词
        inputs = tokenizer(input_text, return_tensors='pt')

        # 检查是否有可用的GPU
        device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        model.to(device)
        inputs = {k: v.to(device) for k, v in inputs.items()}

        # 前向传播
        with torch.no_grad():
            outputs = model(**inputs)

        # 获取预测结果
        logits = outputs.logits
        predicted_class_id = torch.argmax(logits, dim=-1).item()
        return predicted_class_id
    except Exception as e:
        print(f"预测过程中出现错误: {e}")
        return None


# 加载预训练的BERT模型和分词器
tokenizer = BertTokenizer.from_pretrained('bert-base-chinese')
model = BertForSequenceClassification.from_pretrained('bert-base-chinese', num_labels=3)  # 假设有3种关系类型

# 示例输入
text = "苹果公司是一家科技公司,史蒂夫·乔布斯是其创始人。"
head_entity = "苹果公司"
tail_entity = "史蒂夫·乔布斯"

# 进行预测
predicted_class_id = predict_relation(text, head_entity, tail_entity, model, tokenizer)
if predicted_class_id is not None:
    print(f"预测的关系类别: {predicted_class_id}")
相关推荐
AI_56784 小时前
SQL性能优化全景指南:从量子执行计划到自适应索引的终极实践
数据库·人工智能·学习·adb
cyyt4 小时前
深度学习周报(2.2~2.8)
人工智能·深度学习
阿杰学AI4 小时前
AI核心知识92——大语言模型之 Self-Attention Mechanism(简洁且通俗易懂版)
人工智能·ai·语言模型·自然语言处理·aigc·transformer·自注意力机制
陈天伟教授4 小时前
人工智能应用- 语言处理:03.机器翻译:规则方法
人工智能·自然语言处理·机器翻译
Σίσυφος19004 小时前
PCL 姿态估计 RANSAC + SVD(基于特征匹配)
人工智能·机器学习
Warren2Lynch4 小时前
C4 vs UML:从入门到结合使用的完整指南(含 Visual Paradigm AI 实操)
人工智能·机器学习·uml
Ryan老房4 小时前
智能家居AI-家庭场景物体识别标注实战
人工智能·yolo·目标检测·计算机视觉·ai·智能家居
2401_836235864 小时前
财务报表识别产品:从“数据搬运”到“智能决策”的技术革命
人工智能·科技·深度学习·ocr·生活
明明如月学长5 小时前
全网最火的 Agent Skills 都在这了!这 7 个宝藏市场建议收藏
人工智能