分类算法中one-vs-rest策略和one-vs-one 策略的区别是什么?

LGBMClassifier 参数中,常使用objective: 这个参数定义了模型的目标函数。

而对于多分类问题,通常使用 'multiclass' 或者 'multiclassova'。'multiclass' 表示 one-vs-rest 策略,而 'multiclassova' 则是 one-vs-one 策略。

在机器学习领域,特别是在多类分类问题中,"multiclass"通常指的是一个多类分类器可以直接处理多个类别的情形。然而,当提到"one-vs-rest"(OvR)和"one-vs-one"(OvO)策略时,我们是在讨论解决多类分类问题的具体方法。 One-vs-Rest (OvR) 策略:

也称为 One-vs-All (OvA),这种策略将多类分类问题转化为一系列二元分类问题。具体来说,如果有 N 个类别,则会构建 N 个分类器,每个分类器负责区分一个类与其他所有类。在预测阶段,每个分类器都会输出一个决策值,最终的类别则被赋予输出最大决策值的那个分类器对应的类别。

One-vs-One (OvO) 策略:

在这种策略下,每一对类别之间都会有一个独立的分类器。也就是说,如果有 N 个类别,则会有 C(N, 2) = N*(N-1)/2 个分类器,每个分类器仅需区分两个类别。在预测阶段,每个分类器都会投票决定输入属于哪一方,最终类别则是获得最多票数的类别。

因此,"multiclassova"可能是指使用了 OvO 方法来解决多类分类问题,而"multiclass"通常意味着分类器本身能直接处理多类问题,或者指使用了 OvR 方法(虽然术语上不太常见)。这两种策略各有优缺点,例如 OvR 在类别不平衡情况下表现较好,而 OvO 更适合类别较多的情况,因为它减少了类别之间的直接竞争。

在树类模型中,都存在这个问题,具体使用哪种方式,要根据实际的类别之间的情况确定。

相关推荐
geneculture7 分钟前
融智学院十大学部知识架构示范样板
人工智能·数据挖掘·信息科学·哲学与科学统一性·信息融智学
无风听海9 分钟前
神经网络之交叉熵与 Softmax 的梯度计算
人工智能·深度学习·神经网络
算家计算10 分钟前
AI树洞现象:是社交降级,还是我们都在失去温度?
人工智能
java1234_小锋12 分钟前
TensorFlow2 Python深度学习 - TensorFlow2框架入门 - 神经网络基础原理
python·深度学习·tensorflow·tensorflow2
JJJJ_iii13 分钟前
【深度学习03】神经网络基本骨架、卷积、池化、非线性激活、线性层、搭建网络
网络·人工智能·pytorch·笔记·python·深度学习·神经网络
sensen_kiss16 分钟前
INT301 Bio-computation 生物计算(神经网络)Pt.1 导论与Hebb学习规则
人工智能·神经网络·学习
mwq3012320 分钟前
GPT系列模型演进:从GPT-1到GPT-4o的技术突破与差异解析
人工智能
JJJJ_iii22 分钟前
【深度学习05】PyTorch:完整的模型训练套路
人工智能·pytorch·python·深度学习
mwq3012335 分钟前
AI的“物理学”:揭秘GPT-3背后改变一切的“缩放定律”
人工智能
DP+GISer43 分钟前
自己制作遥感深度学习数据集进行遥感深度学习地物分类-试读
人工智能·深度学习·分类