分类算法中one-vs-rest策略和one-vs-one 策略的区别是什么?

LGBMClassifier 参数中,常使用objective: 这个参数定义了模型的目标函数。

而对于多分类问题,通常使用 'multiclass' 或者 'multiclassova'。'multiclass' 表示 one-vs-rest 策略,而 'multiclassova' 则是 one-vs-one 策略。

在机器学习领域,特别是在多类分类问题中,"multiclass"通常指的是一个多类分类器可以直接处理多个类别的情形。然而,当提到"one-vs-rest"(OvR)和"one-vs-one"(OvO)策略时,我们是在讨论解决多类分类问题的具体方法。 One-vs-Rest (OvR) 策略:

也称为 One-vs-All (OvA),这种策略将多类分类问题转化为一系列二元分类问题。具体来说,如果有 N 个类别,则会构建 N 个分类器,每个分类器负责区分一个类与其他所有类。在预测阶段,每个分类器都会输出一个决策值,最终的类别则被赋予输出最大决策值的那个分类器对应的类别。

One-vs-One (OvO) 策略:

在这种策略下,每一对类别之间都会有一个独立的分类器。也就是说,如果有 N 个类别,则会有 C(N, 2) = N*(N-1)/2 个分类器,每个分类器仅需区分两个类别。在预测阶段,每个分类器都会投票决定输入属于哪一方,最终类别则是获得最多票数的类别。

因此,"multiclassova"可能是指使用了 OvO 方法来解决多类分类问题,而"multiclass"通常意味着分类器本身能直接处理多类问题,或者指使用了 OvR 方法(虽然术语上不太常见)。这两种策略各有优缺点,例如 OvR 在类别不平衡情况下表现较好,而 OvO 更适合类别较多的情况,因为它减少了类别之间的直接竞争。

在树类模型中,都存在这个问题,具体使用哪种方式,要根据实际的类别之间的情况确定。

相关推荐
知来者逆几秒前
视觉语言模型应用开发——Qwen 2.5 VL模型视频理解与定位能力深度解析及实践指南
人工智能·语言模型·自然语言处理·音视频·视觉语言模型·qwen 2.5 vl
IT_陈寒2 分钟前
Java性能优化:10个让你的Spring Boot应用提速300%的隐藏技巧
前端·人工智能·后端
Android出海5 分钟前
Android 15重磅升级:16KB内存页机制详解与适配指南
android·人工智能·新媒体运营·产品运营·内容运营
cyyt7 分钟前
深度学习周报(9.1~9.7)
人工智能·深度学习
悟乙己7 分钟前
使用 Python 中的强化学习最大化简单 RAG 性能
开发语言·python·agent·rag·n8n
聚客AI9 分钟前
🌸万字解析:大规模语言模型(LLM)推理中的Prefill与Decode分离方案
人工智能·llm·掘金·日新计划
max50060012 分钟前
图像处理:实现多图点重叠效果
开发语言·图像处理·人工智能·python·深度学习·音视频
AI原吾23 分钟前
玩转物联网只需十行代码,可它为何悄悄停止维护
python·物联网·hbmqtt
麦麦麦造25 分钟前
国外网友的3个步骤,实现用Prompt来写Prompt!超简单!
人工智能
云动雨颤30 分钟前
Python单元测试入门:3个核心断言方法,帮你快速定位代码bug
python·单元测试