分类算法中one-vs-rest策略和one-vs-one 策略的区别是什么?

LGBMClassifier 参数中,常使用objective: 这个参数定义了模型的目标函数。

而对于多分类问题,通常使用 'multiclass' 或者 'multiclassova'。'multiclass' 表示 one-vs-rest 策略,而 'multiclassova' 则是 one-vs-one 策略。

在机器学习领域,特别是在多类分类问题中,"multiclass"通常指的是一个多类分类器可以直接处理多个类别的情形。然而,当提到"one-vs-rest"(OvR)和"one-vs-one"(OvO)策略时,我们是在讨论解决多类分类问题的具体方法。 One-vs-Rest (OvR) 策略:

也称为 One-vs-All (OvA),这种策略将多类分类问题转化为一系列二元分类问题。具体来说,如果有 N 个类别,则会构建 N 个分类器,每个分类器负责区分一个类与其他所有类。在预测阶段,每个分类器都会输出一个决策值,最终的类别则被赋予输出最大决策值的那个分类器对应的类别。

One-vs-One (OvO) 策略:

在这种策略下,每一对类别之间都会有一个独立的分类器。也就是说,如果有 N 个类别,则会有 C(N, 2) = N*(N-1)/2 个分类器,每个分类器仅需区分两个类别。在预测阶段,每个分类器都会投票决定输入属于哪一方,最终类别则是获得最多票数的类别。

因此,"multiclassova"可能是指使用了 OvO 方法来解决多类分类问题,而"multiclass"通常意味着分类器本身能直接处理多类问题,或者指使用了 OvR 方法(虽然术语上不太常见)。这两种策略各有优缺点,例如 OvR 在类别不平衡情况下表现较好,而 OvO 更适合类别较多的情况,因为它减少了类别之间的直接竞争。

在树类模型中,都存在这个问题,具体使用哪种方式,要根据实际的类别之间的情况确定。

相关推荐
彭泽布衣2 分钟前
python2.7/lib-dynload/_ssl.so: undefined symbol: sk_pop_free
python·sk_pop_free
强哥之神27 分钟前
Meta AI 推出 Multi - SpatialMLLM:借助多模态大语言模型实现多帧空间理解
人工智能·深度学习·计算机视觉·语言模型·自然语言处理·llama
路溪非溪27 分钟前
机器学习:更多分类回归算法之决策树、SVM、KNN
机器学习·分类·回归
成都极云科技35 分钟前
成都算力租赁新趋势:H20 八卡服务器如何重塑 AI 产业格局?
大数据·服务器·人工智能·云计算·gpu算力
喜欢吃豆36 分钟前
从零构建MCP服务器:FastMCP实战指南
运维·服务器·人工智能·python·大模型·mcp
一个处女座的测试1 小时前
Python语言+pytest框架+allure报告+log日志+yaml文件+mysql断言实现接口自动化框架
python·mysql·pytest
ai_xiaogui1 小时前
AIStarter用户与创作者模式详解:一键管理Stable Diffusion项目!
人工智能·stable diffusion·一键发布ai项目·熊哥aistarter教程·开发者必备aistarter
nananaij1 小时前
【Python基础入门 re模块实现正则表达式操作】
开发语言·python·正则表达式
止步前行1 小时前
Cursor配置DeepSeek调用MCP服务实现任务自动化
人工智能·cursor·deepseek·mcp
阿星AI工作室1 小时前
AI产品经理必看的大模型微调劝退指南丨实战笔记
人工智能·产品经理·ai编程