符号速率估计——小波变换法

@[TOC]符号速率估计------小波变换法

一、原理

1.Haar小波变换

小波变换在信号处理领域被成为数学显微镜,不同于傅里叶变换,小波变换可以观测信号随时间变换的频谱特征,因此,常用于时频分析。

当小波变换前后位置处于同一个码元内或相邻两个码元相同时,其幅度是不变的,当相邻的码元不同时,小波变换的幅度值会响应变化的,其幅值常与相邻码元的幅度、相位和频率的变换有关,Haar小波可以识别出码元跳变位置,因此,可以进一步估计出数字信号的码元速率。Haar小波定义如下:
ϕ a , b ( t ) = { − 1 / a , 0 < = t < a / 2 1 / a , − a / 2 < t < 0 \phi_{a,b}(t)=\{_{-1/\sqrt{a},0<=t<a/2}^{1/\sqrt{a},-a/2<t<0} ϕa,b(t)={−1/a ,0<=t<a/21/a ,−a/2<t<0

小波变换公式如下:
W s ( a , b ) = ∫ − ∞ ∞ s ( t ) ϕ ∗ ( t − b a ) d t W_{s}(a,b)=\int_{-\infin}^{\infin}s(t)\phi^{*}(\frac{t-b}{a})dt Ws(a,b)=∫−∞∞s(t)ϕ∗(at−b)dt

其中,是 s ( t ) s(t) s(t)为平方可积信号。

2.码元速率估计过程

1)产生haar小波,小波长度为一个码元长度;

  1. 小波变换,识别码元跳变位置;

3)傅里叶变换,计算码元速率,频谱中的第一个谱峰值位置即为所求的码元速率。

二、Matlab仿真

1.代码

c 复制代码
%------Function:Estimate Symbol Rate--------
%------Remark:Using Wavelet Transform-------
%------Time:2025.04.11----------------------
%------Author:Clemence----------------------
clc;
close all;
clear all;

%------------------1.Paras----------------------------------------------
S_N = 100;      % Symbol Num
nSamp = 400;     % Samples per Symbol
N = S_N*nSamp;  % Sample Num
M = 2;          % Modulate index
f = 30;        % Signal Frequence
fs = 2000;      % Sample Frequence
ts = 1/fs;      % Sample Interval
t = 0:ts:ts*(N-1);  % Sample time

symbol = randi([0 M-1],S_N,1);  % Symbol
symbol = 2*symbol-1;            % 
symbrate = fs/nSamp;            % Symbol Rate

%------------------2.Create 2FSK Signal------------------------------------
for i=1:S_N     
    s((i-1)*nSamp+1:i*nSamp) = cos((2*pi*f+pi*symbol(i))*t((i-1)*nSamp+1:i*nSamp));
end

%-----------------3.Create Wavelet-----------------------------------------
Tb = nSamp*ts;       % Wavelet length
t = -Tb/2:ts:Tb/2;   % Wavelet Samples

phi_t = (t>-Tb/2 & t<0)-(t>0 & t<-Tb/2);


%-----------------4. Wavelet Transform-------------------------------------
for i = 1:length(s)-length(phi_t)
   x = s(i:i+length(phi_t)-1); 
   y = x.*phi_t;
   sum_y(i) = sum(y);
end

%-----------------5. plot -------------------------------------------------
figure;
subplot(2,2,1)
plot(s);
title('Original Signal')

subplot(2,2,2)
plot(t,phi_t);
title('Haar Wavelet')

subplot(2,2,3)
plot(sum_y);
title('Wavelet Transform Result')

n = length(sum_y)
inx = (0:n-1)*fs/n;

subplot(2,2,4)
plot(inx,abs(fft(abs(sum_y))));
title('Wavelet Transform Frequence')

2.仿真结果


符号速率估计结果

三、总结

从仿真结果可以看出,小波变换法估计出的符号速率为5.00126,与信号的实际符号速率5基本接近,同时,符号速率估计的精度受信号的频率以及Haar小波的参数影响。

相关推荐
码到成龚5 分钟前
问题及解决01-面板无法随着窗口的放大而放大
matlab·appdesigner
XuX037 分钟前
手搓传染病模型(SEIARW)
数学建模·matlab·微分方程·传染病
沅_Yuan20 分钟前
基于小波神经网络(WNN)的回归预测模型【MATLAB】
深度学习·神经网络·matlab·回归·小波神经网络·wnn
万能程序员-传康Kk37 分钟前
旅游推荐数据分析可视化系统算法
算法·数据分析·旅游
PXM的算法星球43 分钟前
【并发编程基石】CAS无锁算法详解:原理、实现与应用场景
算法
ll77881143 分钟前
C++学习之路,从0到精通的征途:继承
开发语言·数据结构·c++·学习·算法
烨然若神人~1 小时前
算法第十七天|654. 最大二叉树、617.合并二叉树、700.二叉搜索树中的搜索、98.验证二叉搜索树
算法
爱coding的橙子1 小时前
每日算法刷题Day2 5.10:leetcode数组1道题3种解法,用时40min
算法·leetcode
程序媛小盐2 小时前
贪心算法:最小生成树
算法·贪心算法·图论
Panesle2 小时前
分布式异步强化学习框架训练32B大模型:INTELLECT-2
人工智能·分布式·深度学习·算法·大模型