符号速率估计——小波变换法

@[TOC]符号速率估计------小波变换法

一、原理

1.Haar小波变换

小波变换在信号处理领域被成为数学显微镜,不同于傅里叶变换,小波变换可以观测信号随时间变换的频谱特征,因此,常用于时频分析。

当小波变换前后位置处于同一个码元内或相邻两个码元相同时,其幅度是不变的,当相邻的码元不同时,小波变换的幅度值会响应变化的,其幅值常与相邻码元的幅度、相位和频率的变换有关,Haar小波可以识别出码元跳变位置,因此,可以进一步估计出数字信号的码元速率。Haar小波定义如下:
ϕ a , b ( t ) = { − 1 / a , 0 < = t < a / 2 1 / a , − a / 2 < t < 0 \phi_{a,b}(t)=\{_{-1/\sqrt{a},0<=t<a/2}^{1/\sqrt{a},-a/2<t<0} ϕa,b(t)={−1/a ,0<=t<a/21/a ,−a/2<t<0

小波变换公式如下:
W s ( a , b ) = ∫ − ∞ ∞ s ( t ) ϕ ∗ ( t − b a ) d t W_{s}(a,b)=\int_{-\infin}^{\infin}s(t)\phi^{*}(\frac{t-b}{a})dt Ws(a,b)=∫−∞∞s(t)ϕ∗(at−b)dt

其中,是 s ( t ) s(t) s(t)为平方可积信号。

2.码元速率估计过程

1)产生haar小波,小波长度为一个码元长度;

  1. 小波变换,识别码元跳变位置;

3)傅里叶变换,计算码元速率,频谱中的第一个谱峰值位置即为所求的码元速率。

二、Matlab仿真

1.代码

c 复制代码
%------Function:Estimate Symbol Rate--------
%------Remark:Using Wavelet Transform-------
%------Time:2025.04.11----------------------
%------Author:Clemence----------------------
clc;
close all;
clear all;

%------------------1.Paras----------------------------------------------
S_N = 100;      % Symbol Num
nSamp = 400;     % Samples per Symbol
N = S_N*nSamp;  % Sample Num
M = 2;          % Modulate index
f = 30;        % Signal Frequence
fs = 2000;      % Sample Frequence
ts = 1/fs;      % Sample Interval
t = 0:ts:ts*(N-1);  % Sample time

symbol = randi([0 M-1],S_N,1);  % Symbol
symbol = 2*symbol-1;            % 
symbrate = fs/nSamp;            % Symbol Rate

%------------------2.Create 2FSK Signal------------------------------------
for i=1:S_N     
    s((i-1)*nSamp+1:i*nSamp) = cos((2*pi*f+pi*symbol(i))*t((i-1)*nSamp+1:i*nSamp));
end

%-----------------3.Create Wavelet-----------------------------------------
Tb = nSamp*ts;       % Wavelet length
t = -Tb/2:ts:Tb/2;   % Wavelet Samples

phi_t = (t>-Tb/2 & t<0)-(t>0 & t<-Tb/2);


%-----------------4. Wavelet Transform-------------------------------------
for i = 1:length(s)-length(phi_t)
   x = s(i:i+length(phi_t)-1); 
   y = x.*phi_t;
   sum_y(i) = sum(y);
end

%-----------------5. plot -------------------------------------------------
figure;
subplot(2,2,1)
plot(s);
title('Original Signal')

subplot(2,2,2)
plot(t,phi_t);
title('Haar Wavelet')

subplot(2,2,3)
plot(sum_y);
title('Wavelet Transform Result')

n = length(sum_y)
inx = (0:n-1)*fs/n;

subplot(2,2,4)
plot(inx,abs(fft(abs(sum_y))));
title('Wavelet Transform Frequence')

2.仿真结果


符号速率估计结果

三、总结

从仿真结果可以看出,小波变换法估计出的符号速率为5.00126,与信号的实际符号速率5基本接近,同时,符号速率估计的精度受信号的频率以及Haar小波的参数影响。

相关推荐
梨子串桃子_6 分钟前
推荐系统学习笔记 | PyTorch学习笔记
pytorch·笔记·python·学习·算法
guygg8814 分钟前
一级倒立摆MATLAB仿真程序
开发语言·matlab
夏鹏今天学习了吗18 分钟前
【LeetCode热题100(83/100)】最长递增子序列
算法·leetcode·职场和发展
Godspeed Zhao27 分钟前
现代智能汽车中的无线技术25——Wi-Fi(13)
网络·汽车·智能路由器·信息与通信
情缘晓梦.34 分钟前
C语言指针进阶
java·开发语言·算法
北邮刘老师1 小时前
智能体治理:人工智能时代信息化系统的全新挑战与课题
大数据·人工智能·算法·机器学习·智能体互联网
EW Frontier1 小时前
【时频分析】面向相交群延迟多分量信号的时频重分配同步挤压频域线性调频小波变换【附MATLAB代码】
信号处理·时频分析
AlenTech2 小时前
155. 最小栈 - 力扣(LeetCode)
算法·leetcode·职场和发展
mit6.8242 小时前
正反两次扫描|单调性cut
算法
Yzzz-F2 小时前
牛客小白月赛127 E
算法