图论算法体系:并查集、生成树、排序与路径搜索全解析

图论的基础理论入门,到深搜广搜搭建起图论的骨架。

并查集最小生成树 ,从拓扑排序最短路径

....

群星璀璨😉


  • 并查集
  • 最小生成树
    • Prim算法
    • Kruskal算法
  • 拓扑排序(kahn算法)
  • ·最短路径
    • Dijkstra算法
      • Dijkstra朴素
      • Dijkstra堆优化
    • Bellman_ford算法
      • Bellman_ford朴素
      • SPFA
      • Bellman_ford之判断负权回路
      • Bellman_ford之单源有限最短路
    • Floyed算法
    • 启发式搜索A*算法

一、并查集

作用:

  • 连通性判断(两个节点是否连通)
  • 检测环(在无项图中,添加两个节点是否属于同一父节点)
  • 最小生成树(KrusKal)

模版:

基础应用
bash 复制代码
简单例子;
无向图,有1~5这5个节点
1 2
2 3 
3 4
求解,2与4是否连通。2与5呢?
加入1-4
是否会成环?
按照模板给出讲解顺序
// 这只是无向图中的应用,是最基础的
// 有向图会麻烦一点点
压缩路径:

(最基础、最常用)

cpp 复制代码
int n = 1005; // n根据题目中节点数量而定,一般比节点数量大一点就好
vector<int> father = vector<int> (n, 0); // C++里的一种数组结构

// 并查集初始化
void init() {
    for (int i = 0; i < n; ++i) {
        father[i] = i;
    }
}
// 并查集里寻根的过程
int find(int u) {
    return u == father[u] ? u : father[u] = find(father[u]); // 路径压缩
}

// 判断 u 和 v是否找到同一个根
bool isSame(int u, int v) {
    u = find(u);
    v = find(v);
    return u == v;
}

// 将v->u 这条边加入并查集
void join(int u, int v) {
    u = find(u); // 寻找u的根
    v = find(v); // 寻找v的根
    if (u == v) return ; // 如果发现根相同,则说明在一个集合,不用两个节点相连直接返回
    father[v] = u;
}
按秩合并:

(大规模场景,需要性能优化时,会用到这个)(我没遇到,不知道)

cpp 复制代码
int n = 1005; // n根据题目中节点数量而定,一般比节点数量大一点就好
vector<int> father = vector<int> (n, 0); // C++里的一种数组结构
vector<int> rank = vector<int> (n, 1); // 初始每棵树的高度都为1

// 并查集初始化
void init() {
    for (int i = 0; i < n; ++i) {
        father[i] = i;
        rank[i] = 1; // 也可以不写
    }
}
// 并查集里寻根的过程
int find(int u) {
    return u == father[u] ? u : find(father[u]);// 注意这里不做路径压缩
}

// 判断 u 和 v是否找到同一个根
bool isSame(int u, int v) {
    u = find(u);
    v = find(v);
    return u == v;
}

// 将v->u 这条边加入并查集
void join(int u, int v) {
    u = find(u); // 寻找u的根
    v = find(v); // 寻找v的根

    if (rank[u] <= rank[v]) father[u] = v; // rank小的树合入到rank大的树
    else father[v] = u;

    if (rank[u] == rank[v] && u != v) rank[v]++; // 如果两棵树高度相同,则v的高度+1,因为上面 if (rank[u] <= rank[v]) father[u] = v; 注意是 <=
}

二、最小生成树

基础定义:

给一个无向连通图,找到一个子图,满足:

  • 包含所有顶点(N个顶点)
  • 有N-1条边
  • 边权值最小

(举例详细解释一下)
prime 是以点为基础,所以更适合稠密图**(O(N^2))**
Kruskal 以边为基础,更适合稀疏图 (O(nlogn))

(一般题目会这样出题:有多个城市之间埔公路(A、B、C、D),求如何才能用最少的原材料,让所有城市之间连通?)

Prim算法:

核心思想:

从顶点出发的贪心思想,

每次循环都会连接一个 距离生成树 距离最近 的节点

基础应用
模板:

三步走:

  • 找出距离已得到生成树最近的节点。
  • 更新去重数组
  • 更新未加入生成树节点,到达生成树的最小距离。(用新加入的节点表示)
cpp 复制代码
#include<iostream>
#include<vector>
#include <climits>

using namespace std;
int main() {
    int v, e;
    int x, y, k;
    cin >> v >> e;
    // 填一个默认最大值,题目描述val最大为10000
    vector<vector<int>> grid(v + 1, vector<int>(v + 1, 10001));
    while (e--) {
        cin >> x >> y >> k;
        // 因为是双向图,所以两个方向都要填上
        grid[x][y] = k;
        grid[y][x] = k;

    }
    // 所有节点到最小生成树的最小距离
    vector<int> minDist(v + 1, 10001);

    // 这个节点是否在树里
    vector<bool> isInTree(v + 1, false);

    // 我们只需要循环 n-1次,建立 n - 1条边,就可以把n个节点的图连在一起
    for (int i = 1; i < v; i++) {

        // 1、prim三部曲,第一步:选距离生成树最近节点
        int cur = -1; // 选中哪个节点 加入最小生成树
        int minVal = INT_MAX;
        for (int j = 1; j <= v; j++) { // 1 - v,顶点编号,这里下标从1开始
            //  选取最小生成树节点的条件:
            //  (1)不在最小生成树里
            //  (2)距离最小生成树最近的节点
            if (!isInTree[j] &&  minDist[j] < minVal) {
                minVal = minDist[j];
                cur = j;
            }
        }
        // 2、prim三部曲,第二步:最近节点(cur)加入生成树
        isInTree[cur] = true;

        // 3、prim三部曲,第三步:更新非生成树节点到生成树的距离(即更新minDist数组)
        // cur节点加入之后, 最小生成树加入了新的节点,那么所有节点到 最小生成树的距离(即minDist数组)需要更新一下
        // 由于cur节点是新加入到最小生成树,那么只需要关心与 cur 相连的 非生成树节点 的距离 是否比 原来 非生成树节点到生成树节点的距离更小了呢
        for (int j = 1; j <= v; j++) {
            // 更新的条件:
            // (1)节点是 非生成树里的节点
            // (2)与cur相连的某节点的权值 比 该某节点距离最小生成树的距离小
            // 很多录友看到自己 就想不明白什么意思,其实就是 cur 是新加入 最小生成树的节点,那么 所有非生成树的节点距离生成树节点的最近距离 由于 cur的新加入,需要更新一下数据了
            if (!isInTree[j] && grid[cur][j] < minDist[j]) {
                minDist[j] = grid[cur][j];
            }
        }
    }
    // 统计结果
    int result = 0;
    for (int i = 2; i <= v; i++) { // 不计第一个顶点,因为统计的是边的权值,v个节点有 v-1条边
        result += minDist[i];
    }
    cout << result << endl;

}

Kruskal算法:

(克鲁斯卡尔算法)

核心思想:

从 "边" 开始的,贪心思想。

基础应用:
bash 复制代码
初始数据
7 11   // 7个节点、11条边
1 2 1  // 顶点1与顶点2相连、权值为1
1 3 1
1 5 2
2 6 1
2 4 2
2 3 2
3 4 1
4 5 1
5 6 2
5 7 1
6 7 1
求解最小生成树,权值最小为多少。可以转化为:
(有多个城市之间埔公路,求如何才能用最少的原材料,让所有城市之间连通?)
// 排序过后的
1 2 1
1 3 1
2 6 1
3 4 1
4 5 1
6 7 1
5 7 1
2 3 2
1 5 2
2 4 2
5 6 2
模板:

重点步骤:

  • 储存每条边,并按照权值大小按照升序排序,放在edges数组中
  • 建立并查集模板
  • 通过edges数组,建立最小生成树
cpp 复制代码
#include <iostream>
#include <vector>
#include <algorithm>

using namespace std;

// l,r为 边两边的节点,val为边的数值
struct Edge {
    int l, r, val;
};

// 节点数量
int n = 10001;
// 并查集标记节点关系的数组
vector<int> father(n, -1); // 节点编号是从1开始的,n要大一些

// 并查集初始化
void init() {
    for (int i = 0; i < n; ++i) {
        father[i] = i;
    }
}

// 并查集的查找操作
int find(int u) {
    return u == father[u] ? u : father[u] = find(father[u]); // 路径压缩
}

// 并查集的加入集合
void join(int u, int v) {
    u = find(u); // 寻找u的根
    v = find(v); // 寻找v的根
    if (u == v) return ; // 如果发现根相同,则说明在一个集合,不用两个节点相连直接返回
    father[v] = u;
}

int main() {

    int v, e;
    int v1, v2, val;
    vector<Edge> edges;
    int result_val = 0;
    cin >> v >> e;
    while (e--) {
        cin >> v1 >> v2 >> val;
        edges.push_back({v1, v2, val});
    }

    // 执行Kruskal算法
    // 按边的权值对边进行从小到大排序
    sort(edges.begin(), edges.end(), [](const Edge& a, const Edge& b) {
            return a.val < b.val;
    });

    // 并查集初始化
    init();

    // 从头开始遍历边
    for (Edge edge : edges) {
        // 并查集,搜出两个节点的祖先
        int x = find(edge.l);
        int y = find(edge.r);

        // 如果祖先不同,则不在同一个集合
        if (x != y) {
            result_val += edge.val; // 这条边可以作为生成树的边
            join(x, y); // 两个节点加入到同一个集合
        }
    }
    cout << result_val << endl;
    return 0;
}

三、拓扑排序:

作用:

拓扑排序是将,有向图 转化为线性关系。

(先上A课,才能上B课,上了A课才能上C课,先上C课才能上B课,上了B课才能上D课)

求上课顺序应该如何排序(有多种排序方式)

最常用的方式是卡恩算法(BFS)(另一种是DFS回溯法)

Kahn算法

两步走:

  • 找到入度为0的节点,并加入结果集
  • 减去与该节点相连的入度(将该节点从图中移除)

模板

cpp 复制代码
#include <iostream>
#include <vector>
#include <queue>
#include <unordered_map>
using namespace std;
int main() {
    int m, n, s, t;
    cin >> n >> m;
    vector<int> inDegree(n, 0); // 记录每个文件的入度

    unordered_map<int, vector<int>> umap;// 记录文件依赖关系
    vector<int> result; // 记录结果

    while (m--) {
        // s->t,先有s才能有t
        cin >> s >> t;
        inDegree[t]++; // t的入度加一
        umap[s].push_back(t); // 记录s指向哪些文件
    }
    queue<int> que;
    for (int i = 0; i < n; i++) {
        // 入度为0的文件,可以作为开头,先加入队列
        if (inDegree[i] == 0) que.push(i);
        //cout << inDegree[i] << endl;
    }
    // int count = 0;
    while (que.size()) {
        int  cur = que.front(); // 当前选中的文件
        que.pop();
        //count++;
        result.push_back(cur);
        vector<int> files = umap[cur]; //获取该文件指向的文件
        if (files.size()) { // cur有后续文件
            for (int i = 0; i < files.size(); i++) {
                inDegree[files[i]] --; // cur的指向的文件入度-1
                if(inDegree[files[i]] == 0) que.push(files[i]);
            }
        }
    }
    if (result.size() == n) {
        for (int i = 0; i < n - 1; i++) cout << result[i] << " ";
        cout << result[n - 1];
    } else cout << -1 << endl;


}

四、最短路径算法

基础定义:

起点终点最短路径

举一个形象一点的例子:导航地图,你到目的地的推荐路径。

Dijkstra

(迪杰斯特拉算法)--同样是以 " " 为起始的贪心思想,方法与prim大同小异。

基础应用:

举例:从1各个节点 之间最短距离 。(所有权值,必须是正值

dijkstra朴素版:
模板:

三部走:

  • 选源点到那个节点近,且该节点未被访问过
  • 标记该节点为已访问过
  • 更新非访问节点,到源点的距离
cpp 复制代码
#include <iostream>
#include <vector>
#include <climits>
using namespace std;
int main() {
    int n, m, p1, p2, val;
    cin >> n >> m;

    vector<vector<int>> grid(n + 1, vector<int>(n + 1, INT_MAX));
    for(int i = 0; i < m; i++){
        cin >> p1 >> p2 >> val;
        grid[p1][p2] = val;
    }

    int start = 1;
    int end = n;

    // 存储从源点到每个节点的最短距离
    std::vector<int> minDist(n + 1, INT_MAX);

    // 记录顶点是否被访问过
    std::vector<bool> visited(n + 1, false);

    minDist[start] = 0;  // 起始点到自身的距离为0

    for (int i = 1; i <= n; i++) { // 遍历所有节点

        int minVal = INT_MAX;
        int cur = 1;

        // 1、选距离源点最近且未访问过的节点
        for (int v = 1; v <= n; ++v) {
            if (!visited[v] && minDist[v] < minVal) {
                minVal = minDist[v];
                cur = v;
            }
        }

        visited[cur] = true;  // 2、标记该节点已被访问

        // 3、第三步,更新非访问节点到源点的距离(即更新minDist数组)
        for (int v = 1; v <= n; v++) {
            if (!visited[v] && grid[cur][v] != INT_MAX && minDist[cur] + grid[cur][v] < minDist[v]) {
                minDist[v] = minDist[cur] + grid[cur][v];
            }
        }
    }

    if (minDist[end] == INT_MAX) cout << -1 << endl; // 不能到达终点
    else cout << minDist[end] << endl; // 到达终点最短路径

}
dijkstra堆优化法:
模板:

堆优化法,其实挺好实现的,跟Kruskal挺像,就是以 为中心的贪心思想

cpp 复制代码
#include <iostream>
#include <vector>
#include <list>
#include <queue>
#include <climits>
using namespace std; 
// 小顶堆
class mycomparison {
public:
    bool operator()(const pair<int, int>& lhs, const pair<int, int>& rhs) {
        return lhs.second > rhs.second;
    }
};
// 定义一个结构体来表示带权重的边
struct Edge {
    int to;  // 邻接顶点
    int val; // 边的权重

    Edge(int t, int w): to(t), val(w) {}  // 构造函数
};

int main() {
    int n, m, p1, p2, val;
    cin >> n >> m;

    vector<list<Edge>> grid(n + 1);

    for(int i = 0; i < m; i++){
        cin >> p1 >> p2 >> val; 
        // p1 指向 p2,权值为 val
        grid[p1].push_back(Edge(p2, val));

    }

    int start = 1;  // 起点
    int end = n;    // 终点

    // 存储从源点到每个节点的最短距离
    std::vector<int> minDist(n + 1, INT_MAX);

    // 记录顶点是否被访问过
    std::vector<bool> visited(n + 1, false); 
    
    // 优先队列中存放 pair<节点,源点到该节点的权值>
    priority_queue<pair<int, int>, vector<pair<int, int>>, mycomparison> pq;


    // 初始化队列,源点到源点的距离为0,所以初始为0
    pq.push(pair<int, int>(start, 0)); 
    
    minDist[start] = 0;  // 起始点到自身的距离为0

    while (!pq.empty()) {
        // 1. 第一步,选源点到哪个节点近且该节点未被访问过 (通过优先级队列来实现)
        // <节点, 源点到该节点的距离>
        pair<int, int> cur = pq.top(); pq.pop();

        if (visited[cur.first]) continue;

        // 2. 第二步,该最近节点被标记访问过
        visited[cur.first] = true;

        // 3. 第三步,更新非访问节点到源点的距离(即更新minDist数组)
        for (Edge edge : grid[cur.first]) { // 遍历 cur指向的节点,cur指向的节点为 edge
            // cur指向的节点edge.to,这条边的权值为 edge.val
            if (!visited[edge.to] && minDist[cur.first] + edge.val < minDist[edge.to]) { // 更新minDist
                minDist[edge.to] = minDist[cur.first] + edge.val;
                pq.push(pair<int, int>(edge.to, minDist[edge.to]));
            }
        }

    }

    if (minDist[end] == INT_MAX) cout << -1 << endl; // 不能到达终点
    else cout << minDist[end] << endl; // 到达终点最短路径
}
为什么不能有负值:

可以自己模拟一遍

Bellman ford算法

(贝尔曼-福特算法)- 解决权值为负的问题

核心思想:

贝尔曼-福特算法,的核心是松弛操作

尝试通过中间节点缩短路径 的,就是松弛操作

如:点之间的最短距离,点A到点B的最短距离是3,点B到点C的最短距离是-2,点A到点C之间的最短距离是2;

点A->点C的最短距离(A先到B,再到C)(3+(-2))=1;减半减半的呢

Bellman_ford
基础应用:
bash 复制代码
A → B:3(花费为 3)
A → C:5(花费为 5)
B → C:-1(花费 -1,相当于补贴了钱)
B → D:3(花费为 3)
C → D:4(花费为 4)
模板:
cpp 复制代码
#include <iostream>
#include <vector>
#include <list>
#include <climits>
using namespace std;

int main() {
    int n, m, p1, p2, val;
    cin >> n >> m;

    vector<vector<int>> grid;

    // 将所有边保存起来
    for(int i = 0; i < m; i++){
        cin >> p1 >> p2 >> val;
        // p1 指向 p2,权值为 val
        grid.push_back({p1, p2, val});
    }

    int start = 1;  // 起点
    int end = n;    // 终点

    vector<int> minDist(n + 1 , INT_MAX);
    minDist[start] = 0;

    for (int i = 1; i < n; i++) { // 对所有边 松弛 n-1 次
        for (vector<int> &side : grid) { // 每一次松弛,都是对所有边进行松弛
            int from = side[0]; // 边的出发点
            int to = side[1]; // 边的到达点
            int price = side[2]; // 边的权值
            // 松弛操作 
            // minDist[from] != INT_MAX 防止从未计算过的节点出发
            if (minDist[from] != INT_MAX && minDist[to] > minDist[from] + price) { 
                minDist[to] = minDist[from] + price;  
            }
        }
    }

    if (minDist[end] == INT_MAX) cout << "unconnected" << endl; // 不能到达终点
    else cout << minDist[end] << endl; // 到达终点最短路径

}
Bellman_ford优先队列(SPFA)

其实,SPFA就是对应kruskal算法。以"边"为起始的贪心算法

基础应用:
bash 复制代码
A → B:3(花费为 3)
A → C:5(花费为 5)
B → C:-1(花费 -1,相当于补贴了钱)
B → D:3(花费为 3)
C → D:4(花费为 4)
模板:
cpp 复制代码
#include <iostream>
#include <vector>
#include <queue>
#include <list>
#include <climits>
using namespace std;

struct Edge { //邻接表
    int to;  // 链接的节点
    int val; // 边的权重

    Edge(int t, int w): to(t), val(w) {}  // 构造函数
};


int main() {
    int n, m, p1, p2, val;
    cin >> n >> m;

    vector<list<Edge>> grid(n + 1); 

    vector<bool> isInQueue(n + 1); // 加入优化,已经在队里里的元素不用重复添加

    // 将所有边保存起来
    for(int i = 0; i < m; i++){
        cin >> p1 >> p2 >> val;
        // p1 指向 p2,权值为 val
        grid[p1].push_back(Edge(p2, val));
    }
    int start = 1;  // 起点
    int end = n;    // 终点

    vector<int> minDist(n + 1 , INT_MAX);
    minDist[start] = 0;

    queue<int> que;
    que.push(start); 

    while (!que.empty()) {

        int node = que.front(); que.pop();
        isInQueue[node] = false; // 从队列里取出的时候,要取消标记,我们只保证已经在队列里的元素不用重复加入
        for (Edge edge : grid[node]) {
            int from = node;
            int to = edge.to;
            int value = edge.val;
            if (minDist[to] > minDist[from] + value) { // 开始松弛
                minDist[to] = minDist[from] + value; 
                if (isInQueue[to] == false) { // 已经在队列里的元素不用重复添加
                    que.push(to);
                    isInQueue[to] = true;
                }
            }
        }

    }
    if (minDist[end] == INT_MAX) cout << "unconnected" << endl; // 不能到达终点
    else cout << minDist[end] << endl; // 到达终点最短路径
}
Bellman_ford判断负权回路
基础应用:

图中,存在回路,并且回路的值为负值

模板:
1、朴素版

朴素版,其实是最好理解的!

没有负权回路时会循环n-1次,之后n、n+1、n+2...结果都不会在变。

若出现负权回路!不论循环多少次,内容一直会改变。

cpp 复制代码
#include <iostream>
#include <vector>
#include <list>
#include <climits>
using namespace std;

int main() {
    int n, m, p1, p2, val;
    cin >> n >> m;

    vector<vector<int>> grid;

    for(int i = 0; i < m; i++){
        cin >> p1 >> p2 >> val;
        // p1 指向 p2,权值为 val
        grid.push_back({p1, p2, val});

    }
    int start = 1;  // 起点
    int end = n;    // 终点

    vector<int> minDist(n + 1 , INT_MAX);
    minDist[start] = 0;
    bool flag = false;
    for (int i = 1; i <= n; i++) { // 这里我们松弛n次,最后一次判断负权回路
        for (vector<int> &side : grid) {
            int from = side[0];
            int to = side[1];
            int price = side[2];
            if (i < n) {
                if (minDist[from] != INT_MAX && minDist[to] > minDist[from] + price) minDist[to] = minDist[from] + price;
            } else { // 多加一次松弛判断负权回路
                if (minDist[from] != INT_MAX && minDist[to] > minDist[from] + price) flag = true;

            }
        }

    }

    if (flag) cout << "circle" << endl;
    else if (minDist[end] == INT_MAX) {
        cout << "unconnected" << endl;
    } else {
        cout << minDist[end] << endl;
    }
}
2、SPFA

若要用优先队列解决的话,可以根据他的一个性质,每个节点最多被松弛n-1次。

(也就是做n-1次,中间节点)

一点超过n-1次,就会说明出现了负权回路。

cpp 复制代码
#include <iostream>
#include <vector>
#include <queue>
#include <list>
#include <climits>
using namespace std;

struct Edge { //邻接表
    int to;  // 链接的节点
    int val; // 边的权重

    Edge(int t, int w): to(t), val(w) {}  // 构造函数
};


int main() {
    int n, m, p1, p2, val;
    cin >> n >> m;

    vector<list<Edge>> grid(n + 1); // 邻接表

    // 将所有边保存起来
    for(int i = 0; i < m; i++){
        cin >> p1 >> p2 >> val;
        // p1 指向 p2,权值为 val
        grid[p1].push_back(Edge(p2, val));
    }
    int start = 1;  // 起点
    int end = n;    // 终点

    vector<int> minDist(n + 1 , INT_MAX);
    minDist[start] = 0;

    queue<int> que;
    que.push(start); // 队列里放入起点 
    
    vector<int> count(n+1, 0); // 记录节点加入队列几次
    count[start]++;

    bool flag = false;
    while (!que.empty()) {

        int node = que.front(); que.pop();

        for (Edge edge : grid[node]) {
            int from = node;
            int to = edge.to;
            int value = edge.val;
            if (minDist[to] > minDist[from] + value) { // 开始松弛
                minDist[to] = minDist[from] + value;
                que.push(to);
                count[to]++; 
                if (count[to] == n) {// 如果加入队列次数超过 n-1次 就说明该图与负权回路
                    flag = true;
                    while (!que.empty()) que.pop();
                    break;
                }
            }
        }
    }

    if (flag) cout << "circle" << endl;
    else if (minDist[end] == INT_MAX) {
        cout << "unconnected" << endl;
    } else {
        cout << minDist[end] << endl;
    }

}
Bellman_ford之单源最短路
基础应用:

共有1~n各城市,要求城市1->城市n,最多经历k个城市。

模板:

其实挺容易理解的,只要创建两个minDist,复用上一个minDist就行。

在这个前提下,只需要k次,就能求出所有(1~k)的城市。

1、朴素版:
cpp 复制代码
// 版本二
#include <iostream>
#include <vector>
#include <list>
#include <climits>
using namespace std;

int main() {
    int src, dst,k ,p1, p2, val ,m , n;
    
    cin >> n >> m;

    vector<vector<int>> grid;

    for(int i = 0; i < m; i++){
        cin >> p1 >> p2 >> val;
        grid.push_back({p1, p2, val});
    }

    cin >> src >> dst >> k;

    vector<int> minDist(n + 1 , INT_MAX);
    minDist[src] = 0;
    vector<int> minDist_copy(n + 1); // 用来记录上一次遍历的结果
    for (int i = 1; i <= k + 1; i++) {
        minDist_copy = minDist; // 获取上一次计算的结果
        for (vector<int> &side : grid) {
            int from = side[0];
            int to = side[1];
            int price = side[2];
            // 注意使用 minDist_copy 来计算 minDist 
            if (minDist_copy[from] != INT_MAX && minDist[to] > minDist_copy[from] + price) {  
                minDist[to] = minDist_copy[from] + price;
            }
        }
    }
    if (minDist[dst] == INT_MAX) cout << "unreachable" << endl; // 不能到达终点
    else cout << minDist[dst] << endl; // 到达终点最短路径

}
2、SPFA:
cpp 复制代码
    // 将所有边保存起来
    for(int i = 0; i < m; i++){
        cin >> p1 >> p2 >> val;
        // p1 指向 p2,权值为 val
        grid[p1].push_back(Edge(p2, val));
    }
    int start, end, k;
    cin >> start >> end >> k;

    k++;

    vector<int> minDist(n + 1 , INT_MAX);
    vector<int> minDist_copy(n + 1); // 用来记录每一次遍历的结果

    minDist[start] = 0;

    queue<int> que;
    que.push(start); // 队列里放入起点

    int que_size;
    while (k-- && !que.empty()) {

        minDist_copy = minDist; // 获取上一次计算的结果
        que_size = que.size(); // 记录上次入队列的节点个数
        while (que_size--) { // 上一轮松弛入队列的节点,这次对应的边都要做松弛
            int node = que.front(); que.pop();
            for (Edge edge : grid[node]) {
                int from = node;
                int to = edge.to;
                int price = edge.val;
                if (minDist[to] > minDist_copy[from] + price) {
                    minDist[to] = minDist_copy[from] + price;
                    que.push(to);
                }
            }

        }
    }
    if (minDist[end] == INT_MAX) cout << "unreachable" << endl;
    else cout << minDist[end] << endl;

}
Floyed算法
基础应用:

假设你有一张包含多个城市的交通图,想一次性知道 任意两个城市之间的最短路线 (比如全国城市间的多对多导航)。Floyd 算法专门解决这类 全源最短路径 问题,即求出图中所有点对之间的最短路径。

核心思想:

尝试让每个节点做为一个 "中转节点" 。看能不能缩短两点之间的距离。

适合求多元最短路径,n<200最佳(O(n^3))

模板:
cpp 复制代码
#include <iostream>
#include <vector>
using namespace std;

int main() {
    int n, m, p1, p2, val;
    cin >> n >> m;

    vector<vector<int>> grid(n + 1, vector<int>(n + 1, 10005));  // 因为边的最大距离是10^4

    for(int i = 0; i < m; i++){
        cin >> p1 >> p2 >> val;
        grid[p1][p2] = val;
        grid[p2][p1] = val; // 注意这里是双向图

    }
    // 开始 floyd
    for (int k = 1; k <= n; k++) {
        for (int i = 1; i <= n; i++) {
            for (int j = 1; j <= n; j++) {
                grid[i][j] = min(grid[i][j], grid[i][k] + grid[k][j]);
            }
        }
    }
    // 输出结果
    int z, start, end;
    cin >> z;
    while (z--) {
        cin >> start >> end;
        if (grid[start][end] == 10005) cout << -1 << endl;
        else cout << grid[start][end] << endl;
    }
}

A*算法

Astar的核心,在于 启发式函数。

他是建立在BFS广搜的基础之上。

用以下这道题目举例子:

模板:
cpp 复制代码
#include <iostream>
#include <queue>
#include <cstring>
using namespace std;

// 本题有好几个地方需要注意
// 第一,创建结构体,并与优先队列相结合
// 第二,创建二维数组用于去重,并记录走了多少步
// 第三,启发式搜索的权值,用欧拉函数计算,且欧拉函数
//(起点到该点经过的距离)+(该点的距离到终点的距离)
// 其中从起点到该点的距离,容易被用错。是依次经过的距离,不是直线距离。

int a1,a2,b1,b2;
struct knight{
    int m1,m2;
    int g,h,f;
    bool operator<(const knight& k)const{ // 调节为小根堆
        return f>k.f;
    }
};
int visited[1005][1005];
int dir[8][2]={-2,-1,-2,1,-1,2,1,2,2,1,2,-1,1,-2,-1,-2};

int get_squeeze(int m1,int m2,int b1,int b2){
    return (b1-m1)*(b1-m1)+(b2-m2)*(b2-m2);
}

void astar(knight k){
    priority_queue<knight> pq;
    pq.push(k);
    knight node,cur;
    while(!pq.empty()){
        node = pq.top(); pq.pop();
        if(node.m1==b1&&node.m2==b2){
            cout<<visited[node.m1][node.m2]<<endl;
            break;
        }
        for(int i=0; i<8; ++i){
            cur = node;
            cur.m1+=dir[i][0];
            cur.m2+=dir[i][1];
            if(cur.m1<1||cur.m1>1000||cur.m2<1||cur.m2>1000) continue;
            if(visited[cur.m1][cur.m2]) continue;
            visited[cur.m1][cur.m2]=visited[node.m1][node.m2]+1; // 需要在原来的基础上进行操作
            cur.g=node.g+5; // 1*1+2*2=5
            cur.h=get_squeeze(cur.m1,cur.m2,b1,b2);
            cur.f=cur.h+cur.g;
            pq.push(cur);
        }
    }
}

int main(){
    int t;

    cin>>t;
    while(t--){
        cin>>a1>>a2>>b1>>b2;
        if(a1==b1&&a2==b2){ // 直接排除意外情况
            cout<<0<<endl;
            continue;
        }
        memset(visited,0,sizeof visited);
        knight k;
        k.m1 = a1;
        k.m2 = a2;
        k.g = 0;
        k.h = get_squeeze(k.m1,k.m2,b1,b2);
        astar(k);

    }


    return 0;
}

借鉴博客:

1、图论总结篇


相关推荐
啊阿狸不会拉杆4 小时前
数据结构-图
java·c语言·数据结构·c++·python·算法·图论
rgb2gray8 小时前
描述城市出行需求模式的复杂网络视角:大规模起点-目的地需求网络的图论分析
网络·图论
_安晓17 小时前
数据结构 -- 图的应用(一)
数据结构·算法·图论
奶油泡芙shi_caicai1 天前
算法题-图论
算法·图论
_extraordinary_2 天前
数据结构图论基础知识(一)
数据结构·图论
How_doyou_do3 天前
P5839-图论-Floyd算法
数据结构·算法·图论
callJJ3 天前
Floyd算法求解最短路径问题——从零开始的图论讲解(3)
java·算法·动态规划·图论·dijkstra算法·floyd算法·最短路径问题
君义_noip3 天前
信息学奥赛一本通 1504:【例 1】Word Rings | 洛谷 SP2885 WORDRING - Word Rings
c++·算法·图论·信息学奥赛
椰萝Yerosius4 天前
[图论]Prim
算法·图论