卷积神经网络

一、为什么需要卷积

若参数过多,则内存装不下

比如图像大小1000*1000,那么输入层神经元的数目就是10的6次方,全连接层的参数就是10的12次方,一层就是1万亿个参数。

二、卷积是怎么做的

把卷积核的每一个参数和图像中的位置进行相乘再求和得到输出。

图像具有区域性,这个连接就叫局部连接,这也是卷积的特点和优势,经过一层卷积之后提取了图像的高层特征。同时卷积时有参数共享的特性,图片具有位置不变性,比如汽车翻车照样可以识别,图像特征与位置无关,左边是脸右边也是脸。

步长变大,输出变小。

如果使用了padding,在最外面一圈加0,那么假设步长为1,那么输出的size不变。加几圈的padding和卷积核大小有关,如果是5*5那么就要加两圈:

相关推荐
Tech Synapse2 分钟前
人脸识别考勤系统实现教程:基于Face-Recognition、OpenCV与SQLite
人工智能·opencv·sqlite
硅谷秋水23 分钟前
CoT-Drive:利用 LLM 和思维链提示实现自动驾驶的高效运动预测
人工智能·机器学习·语言模型·自动驾驶
界面开发小八哥29 分钟前
Java开发工具IntelliJ IDEA v2025.1——全面支持Java 24、整合AI
java·ide·人工智能·intellij-idea·idea
IT古董1 小时前
【漫话机器学习系列】214.停用词(Stop Words)
人工智能·机器学习
zz9381 小时前
Trae 04.22重磅更新:AI 编程领域的革新者
人工智能
数据智能老司机1 小时前
构建具备自主性的人工智能系统——探索协调者、工作者和委托者方法
深度学习·llm·aigc
数据智能老司机1 小时前
构建具备自主性的人工智能系统——使代理能够使用工具和进行规划
深度学习·llm·aigc
爱编程的鱼1 小时前
C# 结构(Struct)
开发语言·人工智能·算法·c#
2301_769624401 小时前
基于Pytorch的深度学习-第二章
人工智能·pytorch·深度学习
咨询187150651271 小时前
高企复审奖补!2025年合肥市高新技术企业重新认定奖励补贴政策及申报条件
大数据·人工智能·区块链