卷积神经网络

一、为什么需要卷积

若参数过多,则内存装不下

比如图像大小1000*1000,那么输入层神经元的数目就是10的6次方,全连接层的参数就是10的12次方,一层就是1万亿个参数。

二、卷积是怎么做的

把卷积核的每一个参数和图像中的位置进行相乘再求和得到输出。

图像具有区域性,这个连接就叫局部连接,这也是卷积的特点和优势,经过一层卷积之后提取了图像的高层特征。同时卷积时有参数共享的特性,图片具有位置不变性,比如汽车翻车照样可以识别,图像特征与位置无关,左边是脸右边也是脸。

步长变大,输出变小。

如果使用了padding,在最外面一圈加0,那么假设步长为1,那么输出的size不变。加几圈的padding和卷积核大小有关,如果是5*5那么就要加两圈:

相关推荐
张较瘦_44 分钟前
[论文阅读] 人工智能 + 软件工程 | 需求获取访谈中LLM生成跟进问题研究:来龙去脉与创新突破
论文阅读·人工智能
一 铭2 小时前
AI领域新趋势:从提示(Prompt)工程到上下文(Context)工程
人工智能·语言模型·大模型·llm·prompt
麻雀无能为力5 小时前
CAU数据挖掘实验 表分析数据插件
人工智能·数据挖掘·中国农业大学
时序之心5 小时前
时空数据挖掘五大革新方向详解篇!
人工智能·数据挖掘·论文·时间序列
.30-06Springfield6 小时前
人工智能概念之七:集成学习思想(Bagging、Boosting、Stacking)
人工智能·算法·机器学习·集成学习
说私域7 小时前
基于开源AI智能名片链动2+1模式S2B2C商城小程序的超级文化符号构建路径研究
人工智能·小程序·开源
永洪科技7 小时前
永洪科技荣获商业智能品牌影响力奖,全力打造”AI+决策”引擎
大数据·人工智能·科技·数据分析·数据可视化·bi
shangyingying_17 小时前
关于小波降噪、小波增强、小波去雾的原理区分
人工智能·深度学习·计算机视觉
书玮嘎8 小时前
【WIP】【VLA&VLM——InternVL系列】
人工智能·深度学习
猫头虎8 小时前
猫头虎 AI工具分享:一个网页抓取、结构化数据提取、网页爬取、浏览器自动化操作工具:Hyperbrowser MCP
运维·人工智能·gpt·开源·自动化·文心一言·ai编程