【深度强化学习 DRL 快速实践】逆向强化学习算法 (IRL)

Inverse Reinforcement Learning (IRL) 详解

什么是 Inverse Reinforcement Learning?

在传统的强化学习 (Reinforcement Learning, RL) 中,奖励函数是已知的,智能体的任务是学习一个策略来最大化奖励

而在逆向强化学习 (Inverse Reinforcement Learning, IRL) 中,情况相反:

  • 我们不知道奖励函数 缺失的
  • 但是我们有专家的示范轨迹 (比如专家怎么开车、怎么走路): τ = ( s 0 , a 0 , s 1 , a 1 , ... , s T ) \tau = (s_0, a_0, s_1, a_1, \dots, s_T) τ=(s0,a0,s1,a1,...,sT)
  • 目标是:推断出奖励函数,使得专家行为在该奖励下是最优的

简单来说,IRL 是"从专家行为中推断动机"

  • Initialize an actor
  • In each iteration
    • The actor interacts with the environrment to obtain some trajectories
    • Define a reward functlon , which makes thetrajectories of the teacher better than the actor
    • The actor learns to maximize the reward based on the new reward function
  • Output the reward function and the actor learned from the reward function

IRL算法之 GAIL 算法详解

GAIL(生成对抗模仿学习)结合了:生成对抗网络 GAN(Generator 对抗 Discriminator)和 强化学习 Policy Gradient(策略梯度)

  • 让智能体学会产生像专家一样的轨迹,但不直接学习奖励函数,只通过模仿专家行为来训练策略
判别器 (Discriminator) :试图区分 "专家轨迹" 和 "生成器轨迹"

判别器的目标是最大化对数似然:判别器希望对于专家数据 expert 输出接近 1,对于生成数据 policy 输出接近 0
max ⁡ D E expert [ log ⁡ D ( s , a ) ] + E policy [ log ⁡ ( 1 − D ( s , a ) ) ] \max_D \mathbb{E}{\text{expert}} [\log D(s, a)] + \mathbb{E}{\text{policy}} [\log (1 - D(s, a))] DmaxEexpert[logD(s,a)]+Epolicy[log(1−D(s,a))]

生成器(策略网络 Policy):试图"欺骗"判别器,让判别器以为它生成的轨迹是专家生成的

生成器的目标是最小化:
min ⁡ π E τ ∼ π [ log ⁡ ( 1 − D ( s , a ) ) ] \min_{\pi} \mathbb{E}_{\tau \sim \pi} [\log (1 - D(s, a))] πminEτ∼π[log(1−D(s,a))]

这其实可以等价强化学习问题,奖励信号变成了:
r ( s , a ) = − log ⁡ ( 1 − D ( s , a ) ) r(s, a) = - \log (1 - D(s, a)) r(s,a)=−log(1−D(s,a))

  • 这样,跟标准的 policy gradient 非常类似,只不过奖励是来自判别器

GAIL 简单代码示例

python 复制代码
import gym
from stable_baselines3 import PPO
from imitation.algorithms.adversarial import GAIL
from imitation.data.types import TrajectoryWithRew
from imitation.data import rollout

# 1. 创建环境
env = gym.make("CartPole-v1")

# 2. 加载或创建专家模型
expert = PPO("MlpPolicy", env, verbose=0)
expert.learn(10000)

# 3. 收集专家轨迹数据
trajectories = rollout.rollout(
    expert,
    env,
    rollout.make_sample_until(min_timesteps=None, min_episodes=20)
)

# 4. 创建新模型作为 actor
learner = PPO("MlpPolicy", env, verbose=1)

# 5. 使用 GAIL 进行逆强化学习训练
gail_trainer = GAIL(
    venv=env,
    demonstrations=trajectories,
    gen_algo=learner
)
gail_trainer.train(10000)

# 6. 测试训练后的模型
obs = env.reset()
for _ in range(1000):
    action, _states = learner.predict(obs, deterministic=True)
    obs, reward, done, info = env.step(action)
    env.render()
    if done:
        obs = env.reset()

env.close()
相关推荐
再卷也是菜1 天前
C++篇(21)图
数据结构·c++·算法
星轨初途1 天前
C++入门(算法竞赛类)
c++·经验分享·笔记·算法
灰灰勇闯IT1 天前
KMP算法在鸿蒙系统中的应用:从字符串匹配到高效系统级开发(附实战代码)
算法·华为·harmonyos
小龙报1 天前
【算法通关指南:数据结构和算法篇 】队列相关算法题:3.海港
数据结构·c++·算法·贪心算法·创业创新·学习方法·visual studio
csuzhucong1 天前
一阶魔方、一阶金字塔魔方、一阶五魔方
算法
五花就是菜1 天前
P12906 [NERC 2020] Guide 题解
算法·深度优先·图论
辞旧 lekkk1 天前
【c++】封装红黑树实现mymap和myset
c++·学习·算法·萌新
星轨初途1 天前
C++的输入输出(上)(算法竞赛类)
开发语言·c++·经验分享·笔记·算法
n***F8751 天前
SpringMVC 请求参数接收
前端·javascript·算法
Liangwei Lin1 天前
洛谷 P1025 [NOIP 2001 提高组] 数的划分
算法