Gathering resources for OpenCV installation
I need to provide a detailed how-to for installing OpenCV with GPU support. First, I'll list prerequisites like cloning the OpenCV and OpenCV_contrib repositories, setting up CMake configurations, and using CUDA and CUDNN options. Then, I'll look for high-quality resources to cite, such as official documentation, blog posts, and forum discussions. I plan to gather at least 10 citations and verify the installation through OpenCV commands like cv2.cuda.getCudaEnabledDeviceCount(). I'll aim to cover all steps thoroughly.
Answering installation question
Ok, the user is asking how to install OpenCV with GPU support. They mentioned using cuda_GpuMat
and the error that comes up when CUDA isn't built in. I'll need to provide instructions for building OpenCV from source with CUDA and cuDNN support. But I should note prerequisites: the CUDA toolkit, cuDNN, and specific CMake flags (-D WITH_CUDA=ON
, etc.). Since the OS isn't specified, I'll cover both Linux and Windows installation processes.
Thought for 24 seconds
Summary
To enable GPU support in OpenCV, you must compile it from source with CUDA and (optionally) cuDNN enabled. This involves installing the NVIDIA CUDA Toolkit and cuDNN libraries, gathering all required build dependencies, cloning both the main OpenCV and the opencv_contrib
repositories, and configuring the build with CMake flags such as -D WITH_CUDA=ON
, -D WITH_CUDNN=ON
, -D OPENCV_DNN_CUDA=ON
, and the appropriate CUDA_ARCH_BIN
. On Linux (e.g., Ubuntu), you then run make -j$(nproc)
and sudo make install
, while on Windows you use Visual Studio (or Ninja) to build the solution. Finally, you verify the build by checking cv2.cuda.getCudaEnabledDeviceCount()
.
Prerequisites
NVIDIA Software
-
CUDA Toolkit : Install a CUDA Toolkit version compatible with your GPU and desired libraries (e.g., CUDA 11.6 for ONNXRuntime). Ensure its
bin
,lib
, andinclude
directories (andlib\x64
on Windows) are in your system'sPATH
/LD_LIBRARY_PATH
or environment variables citeturn5view0. -
cuDNN : Download the matching cuDNN tarball or zip from NVIDIA, extract it, and copy its
bin
,include
, andlib
contents into your CUDA installation path (e.g.,/usr/local/cuda/
on Linux orC:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.6\
on Windows) citeturn1view0.
Build Tools and Libraries
-
CMake: Version 3.10+ (latest stable recommended) citeturn6view0.
-
Compiler:
-
Linux: GCC 4.4+ or Clang, plus
build-essential
-
Windows: Visual Studio Desktop with C++ workload citeturn6view0
-
-
Dependencies (Ubuntu example):
sudo apt update sudo apt install -y build-essential cmake git \ libgtk-3-dev pkg-config libavcodec-dev libavformat-dev libswscale-dev \ python3-dev python3-numpy libtbb2 libtbb-dev \ libjpeg-dev libpng-dev libtiff-dev libwebp-dev
citeturn3view0
Building OpenCV with CUDA on Ubuntu
-
Clone the repositories
git clone https://github.com/opencv/opencv.git git clone https://github.com/opencv/opencv_contrib.git
citeturn4view0
-
Determine your GPU's compute capability
nvidia-smi -L
Then look up the matching Compute Capability on NVIDIA's CUDA GPUs list and set it as
CUDA_ARCH_BIN
(e.g.,6.1
) citeturn4view0. -
Configure with CMake
cd opencv && mkdir build && cd build cmake -D CMAKE_BUILD_TYPE=RELEASE \ -D CMAKE_INSTALL_PREFIX=/usr/local \ -D WITH_CUDA=ON \ -D WITH_CUDNN=ON \ -D WITH_CUBLAS=ON \ -D WITH_TBB=ON \ -D OPENCV_DNN_CUDA=ON \ -D OPENCV_ENABLE_NONFREE=ON \ -D CUDA_ARCH_BIN=6.1 \ -D OPENCV_EXTRA_MODULES_PATH=~/opencv_contrib/modules \ -D BUILD_EXAMPLES=OFF \ -D HAVE_opencv_python3=ON ..
A successful configuration will show "NVIDIA CUDA: YES" and "cuDNN: YES" in the output citeturn4view0.
-
Build and install
make -j$(nproc) sudo make install sudo ldconfig
Optionally, create a Python symlink so that the
cv2
module is found in Ubuntu'sdist-packages
directory citeturn4view0.
Building OpenCV with CUDA on Windows
-
Setup
-
Install Visual Studio (Desktop development with C++) citeturn6view0.
-
Install CMake and the CUDA Toolkit (e.g., v11.6) and ensure environment variables point to their
bin
,lib
, andinclude
citeturn5view0. -
(Optional) Download the NVIDIA Video Codec SDK and/or cuDNN, extract and copy into the CUDA installation path citeturn6view0.
-
-
Clone source
Download or clone matching versions of
opencv
andopencv_contrib
so that their tags align (e.g., both v4.8.0) citeturn5view0. -
Configure with CMake GUI or CLI
-
GUI : Point "Where is the source code" to your
opencv
folder, "Where to build" to abuild
folder, then enableWITH_CUDA
,OPENCV_EXTRA_MODULES_PATH
, andOPENCV_DNN_CUDA
, set yourCUDA_ARCH_BIN
, and click Configure / Generate citeturn5view0. -
CLI (Ninja example):
set CMAKE_BUILD_PARALLEL_LEVEL=8 cmake -H"%OPENCV_SOURCE%" -B"%BUILD_DIR%" -G"Ninja Multi-Config" ^ -D CMAKE_BUILD_TYPE=Release ^ -D WITH_CUDA=ON ^ -D OPENCV_EXTRA_MODULES_PATH="%OPENCV_CONTRIB%\modules" ^ -D ENABLE_CUDA_FIRST_CLASS_LANGUAGE=ON ^ -D BUILD_opencv_python3=ON ^ -DPYTHON3_EXECUTABLE="%PYTHON_PATH%\python.exe"
citeturn6view0
-
-
Build and install
-
In Visual Studio: build the
ALL_BUILD
target in Release, thenINSTALL
. -
Or in CLI/Ninja:
cmake --build "%BUILD_DIR%" --config Release --target install
-
Verifying the Installation
In Python (or C++), check the CUDA-enabled device count:
import cv2
if cv2.cuda.getCudaEnabledDeviceCount() > 0:
print("CUDA is available!")
else:
print("CUDA is not available.")
You can also inspect detailed build information:
print(cv2.getBuildInformation())
Look for "CUDA", "cuDNN", and "cuBLAS" entries marked as YES citeturn4view0.
Common Issues & Troubleshooting
-
Missing cuDNN files : Ensure you copied cuDNN's
include
andlib
files into your CUDA installation before running CMake citeturn1view0. -
Incorrect
CUDA_ARCH_BIN
: A mismatch between your actual GPU architecture and the flag can cause build or runtime failures. Always verify vianvidia-smi -L
and NVIDIA's CUDA GPUs list citeturn4view0. -
Environment variables : On Windows, a too-long system
PATH
can prevent CUDA from being added; manually add...\CUDA\vXX.X\bin
and...\CUDA\vXX.X\lib\x64
if needed citeturn5view0. -
Version mismatches: Be sure your CUDA, cuDNN, and OpenCV versions are mutually compatible. For example, OpenCV 4.8.0 may require cuDNN 8.x with CUDA 12.x citeturn1view0.
Further Reading
-
Official Linux install guide: docs.opencv.org/Linux tutorial citeturn3view0
-
Ask Ubuntu: detailed CMake flags for Ubuntu 20.04 + CUDA 12.4 citeturn1view0
-
PyImageSearch: background on building OpenCV with CUDA citeturn0search3
-
James Bowley's Windows CLI guide: comprehensive CMake options citeturn6view0