RNN——循环神经网络

一.基本结构

1.目标:处理序列数据(时间序列,文本,语音等),捕捉时间维度上的依赖关系

核心机制:通过隐藏状态(hidden State)传递历史信息,每个时间步的输入包含当前数据和前一步的隐藏状态

前向传播的公式:

  • ht​:当前时间步的隐藏状态

  • xtxt​:当前输入

  • Wh,WxWh​,Wx​:权重矩阵

  • σσ:激活函数(通常为tanhReLU

2.输入与输出形式

单输入单输出(如时间序列预测):每个时间步接收一个输入,最后一步输出预测结果

多输入,多输出(如机器翻译): 每个时间步接收输入并生成输出(如逐词翻译)。

Seq2Seq(如文本生成):编码器-解码器结构,编码器处理输入序列,解码器生成输出序列。

二.RNN的变体

1.双向RNN

  • 特点 :同时捕捉过去和未来的上下文信息。

  • 结构:包含正向和反向两个隐藏层,最终输出由两者拼接而成。

2.深层RNN

  • 特点:堆叠多个RNN层,增强模型表达能力。

  • 结构:每层的隐藏状态作为下一层的输入。

3.LSTM(长短时记忆网络)

  • 核心机制 :通过**细胞状态(Cell State)**和门控机制(输入门、遗忘门、输出门)解决梯度消失问题。

  • 门控公式

    • 遗忘门:决定保留多少旧信息

    • 输入门:决定新增多少新信息

    • 输出门:决定当前隐藏状态输出

4.GRU(门控循环单元)

  • 简化版LSTM:合并细胞状态和隐藏状态,参数更少。

  • 门控公式

    • 更新门:控制新旧信息的融合比例

    • 重置门:决定忽略多少旧信息

三.RNN的梯度问题与优化

梯度消失与爆炸的原因

  • 反向传播:通过时间展开(BPTT)计算梯度时,梯度涉及权重矩阵的连乘。

  • 梯度消失:若权重矩阵特征值 ∣λ∣<1∣λ∣<1,梯度指数级衰减,深层参数无法更新。

  • 梯度爆炸:若 ∣λ∣>1∣λ∣>1,梯度指数级增长,导致数值溢出或模型震荡。

解决方案

  • 梯度裁剪(Gradient Clipping):限制梯度最大值,防止爆炸。

  • 参数初始化:使用正交初始化(保持矩阵乘法后的范数稳定)。

  • 改进结构:LSTM/GRU通过门控机制缓解梯度消失。

  • 残差连接:跨时间步跳跃连接(如 ht=ht−1+f(xt,ht−1)ht​=ht−1​+f(xt​,ht−1​)),直接传递梯度。

相关推荐
阿里云大数据AI技术9 分钟前
[VLDB 2025]面向Flink集群巡检的交叉对比学习异常检测
大数据·人工智能·flink
a1504631 小时前
人工智能——图像梯度处理、边缘检测、绘制图像轮廓、凸包特征检测
人工智能·深度学习·计算机视觉
荼蘼1 小时前
基于 KNN 算法的手写数字识别项目实践
人工智能·算法·机器学习
wei_shuo1 小时前
亚马逊云科技 EC2 部署 Dify,集成 Amazon Bedrock 构建生成式 AI 应用
人工智能·amazon·amazon bedrock
ppo921 小时前
MCP简单应用:使用SpringAI + Cline + DeepSeek实现AI创建文件并写入内容
人工智能·后端
云卓SKYDROID1 小时前
无人机速度模块技术要点分析
人工智能·无人机·科普·高科技·云卓科技
UQI-LIUWJ2 小时前
论文笔记:Tuning Language Models by Proxy
论文阅读·人工智能·语言模型
大魔王(已黑化)3 小时前
OpenCV —— 绘制图形
人工智能·opencv·计算机视觉
开开心心_Every3 小时前
多线程语音识别工具
javascript·人工智能·ocr·excel·语音识别·symfony
机器之心3 小时前
扣子开源全家桶,Apache 2.0加持,AI Agent又一次卷到起飞
人工智能