RNN——循环神经网络

一.基本结构

1.目标:处理序列数据(时间序列,文本,语音等),捕捉时间维度上的依赖关系

核心机制:通过隐藏状态(hidden State)传递历史信息,每个时间步的输入包含当前数据和前一步的隐藏状态

前向传播的公式:

  • ht​:当前时间步的隐藏状态

  • xtxt​:当前输入

  • Wh,WxWh​,Wx​:权重矩阵

  • σσ:激活函数(通常为tanhReLU

2.输入与输出形式

单输入单输出(如时间序列预测):每个时间步接收一个输入,最后一步输出预测结果

多输入,多输出(如机器翻译): 每个时间步接收输入并生成输出(如逐词翻译)。

Seq2Seq(如文本生成):编码器-解码器结构,编码器处理输入序列,解码器生成输出序列。

二.RNN的变体

1.双向RNN

  • 特点 :同时捕捉过去和未来的上下文信息。

  • 结构:包含正向和反向两个隐藏层,最终输出由两者拼接而成。

2.深层RNN

  • 特点:堆叠多个RNN层,增强模型表达能力。

  • 结构:每层的隐藏状态作为下一层的输入。

3.LSTM(长短时记忆网络)

  • 核心机制 :通过**细胞状态(Cell State)**和门控机制(输入门、遗忘门、输出门)解决梯度消失问题。

  • 门控公式

    • 遗忘门:决定保留多少旧信息

    • 输入门:决定新增多少新信息

    • 输出门:决定当前隐藏状态输出

4.GRU(门控循环单元)

  • 简化版LSTM:合并细胞状态和隐藏状态,参数更少。

  • 门控公式

    • 更新门:控制新旧信息的融合比例

    • 重置门:决定忽略多少旧信息

三.RNN的梯度问题与优化

梯度消失与爆炸的原因

  • 反向传播:通过时间展开(BPTT)计算梯度时,梯度涉及权重矩阵的连乘。

  • 梯度消失:若权重矩阵特征值 ∣λ∣<1∣λ∣<1,梯度指数级衰减,深层参数无法更新。

  • 梯度爆炸:若 ∣λ∣>1∣λ∣>1,梯度指数级增长,导致数值溢出或模型震荡。

解决方案

  • 梯度裁剪(Gradient Clipping):限制梯度最大值,防止爆炸。

  • 参数初始化:使用正交初始化(保持矩阵乘法后的范数稳定)。

  • 改进结构:LSTM/GRU通过门控机制缓解梯度消失。

  • 残差连接:跨时间步跳跃连接(如 ht=ht−1+f(xt,ht−1)ht​=ht−1​+f(xt​,ht−1​)),直接传递梯度。

相关推荐
兰亭妙微37 分钟前
用户体验的真正边界在哪里?对的 “认知负荷” 设计思考
人工智能·ux
13631676419侯43 分钟前
智慧物流与供应链追踪
人工智能·物联网
TomCode先生44 分钟前
MES 离散制造核心流程详解(含关键动作、角色与异常处理)
人工智能·制造·mes
zd2005721 小时前
AI辅助数据分析和学习了没?
人工智能·学习
johnny2331 小时前
强化学习RL
人工智能
乌恩大侠1 小时前
无线网络规划与优化方式的根本性变革
人工智能·usrp
放羊郎1 小时前
基于萤火虫+Gmapping、分层+A*优化的导航方案
人工智能·slam·建图·激光slam
王哈哈^_^1 小时前
【数据集+完整源码】水稻病害数据集,yolov8水稻病害检测数据集 6715 张,目标检测水稻识别算法实战训推教程
人工智能·算法·yolo·目标检测·计算机视觉·视觉检测·毕业设计
SEOETC2 小时前
数字人技术:虚实交融的未来图景正在展开
人工智能
boonya2 小时前
从阿里云大模型服务平台百炼看AI应用集成与实践
人工智能·阿里云·云计算