PyTorch线性代数操作详解:点积、矩阵乘法、范数与轴求和

本文通过代码示例详细讲解PyTorch中常用的线性代数操作,包括点积、矩阵乘法、范数计算以及按轴求和等操作,帮助读者掌握张量运算的核心方法。


1. 点积运算

点积(Dot Product)是两个向量对应元素相乘后求和的结果。
实现代码

python 复制代码
import torch

x = torch.tensor([0, 1, 2, 3], dtype=torch.float32)
y = torch.ones(4, dtype=torch.float32)
x, y, torch.dot(x, y)  # 计算点积

输出结果

bash 复制代码
(tensor([0., 1., 2., 3.]), tensor([1., 1., 1., 1.]), tensor(6.))

等价实现方式:

python 复制代码
torch.sum(x * y)  # 通过逐元素乘法和求和实现点积

输出

bash 复制代码
tensor(6.)

2. 矩阵与向量乘法

使用 torch.mv 实现矩阵与向量的乘法。
代码示例

python 复制代码
x = torch.arange(12).reshape((3, 4)).float()
y = torch.ones(4, dtype=torch.float32)
x.shape, y.shape, torch.mv(x, y)  # 矩阵形状、向量形状及乘法结果

输出

bash 复制代码
(torch.Size([3, 4]), torch.Size([4]), tensor([ 6., 22., 38.]))

3. 矩阵与矩阵乘法

使用 torch.mm 实现矩阵与矩阵的乘法。
代码示例

python 复制代码
b = torch.ones(4, 3).float()
torch.mm(x, b)  # 3x4矩阵与4x3矩阵相乘

输出

bash 复制代码
tensor([[ 6.,  6.,  6.],
        [22., 22., 22.],
        [38., 38., 38.]])

4. 范数计算

L2范数(欧几里得范数)

python 复制代码
torch.norm(y)  # 计算向量y的L2范数

输出

bash 复制代码
tensor(2.)

L1范数(绝对值之和)

python 复制代码
torch.abs(y).sum()  # 计算向量y的L1范数

输出

bash 复制代码
tensor(4.)

Frobenius范数(矩阵范数)

python 复制代码
torch.norm(x)  # 计算矩阵x的F范数

输出

bash 复制代码
tensor(22.4944)

5. 按轴求和

沿指定轴求和并保留维度

python 复制代码
sum_x = x.sum(axis=0, keepdim=True)  # 沿水平方向求和,保留维度
sum_x

输出

bash 复制代码
tensor([[12., 15., 18., 21.]])

三维张量的轴求和

python 复制代码
a = torch.ones((2, 5, 4))
a.shape  # 初始形状

输出

bash 复制代码
torch.Size([2, 5, 4])
对多个轴求和
python 复制代码
a.sum(axis=[0, 2], keepdim=True).shape  # 沿第0和第2轴求和

输出

bash 复制代码
torch.Size([1, 5, 1])
单轴求和保留维度
python 复制代码
a.sum(axis=1, keepdim=True).shape  # 沿第1轴求和并保留维度

输出

bash 复制代码
torch.Size([2, 1, 4])

总结

本文演示了PyTorch中常用的线性代数操作,包括:

  • 点积torch.dot 或逐元素乘法后求和;

  • 矩阵乘法torch.mv(矩阵与向量)、torch.mm(矩阵与矩阵);

  • 范数计算:L1、L2和Frobenius范数;

  • 轴求和 :通过 sum(axis) 控制求和方向,keepdim 保留维度。

这些操作是深度学习模型实现的基础,熟练掌握可提升张量运算的效率和代码可读性。

相关推荐
白熊1883 小时前
【大模型LLM】梯度累积(Gradient Accumulation)原理详解
人工智能·大模型·llm
愚戏师3 小时前
机器学习(重学版)基础篇(算法与模型一)
人工智能·算法·机器学习
仰望星空的凡人3 小时前
【JS逆向基础】数据库之MongoDB
javascript·数据库·python·mongodb
F_D_Z4 小时前
【PyTorch】图像多分类项目部署
人工智能·pytorch·python·深度学习·分类
pingzhuyan5 小时前
python入门篇12-虚拟环境conda的安装与使用
python·ai·llm·ocr·conda
香蕉可乐荷包蛋5 小时前
排序算法 (Sorting Algorithms)-Python示例
python·算法·排序算法
音视频牛哥5 小时前
打通视频到AI的第一公里:轻量RTSP服务如何重塑边缘感知入口?
人工智能·计算机视觉·音视频·大牛直播sdk·机器视觉·轻量级rtsp服务·ai人工智能
Wendy14416 小时前
【灰度实验】——图像预处理(OpenCV)
人工智能·opencv·计算机视觉
中杯可乐多加冰7 小时前
五大低代码平台横向深度测评:smardaten 2.0领衔AI原型设计
人工智能
无线图像传输研究探索7 小时前
单兵图传终端:移动场景中的 “实时感知神经”
网络·人工智能·5g·无线图传·5g单兵图传