Fine Structure-Aware Sampling(AAAI 2024)论文笔记和启发

文章目录

本文解决的问题

传统的基于Pifu的人体三维重建一般通过采样来进行学习。一般选择的采样方法是空间采样,具体是在surface的表面随机位移进行样本的生成。这里的采样是同时要在XYZ三个方向上进行。所以这导致了一个问题: 点的位移方向是没有任何约束的,也就是说在任意方向均可采样。可是者在一定的程度上就对确定surface产生了挑战。 因为我们采样的最终目的其实是为了确定目标平面,但是因为方向是随机的就很难准确的找到surface的具体位置,就出现了ambiguity。 就这个问题进行优化的方式比如DOS,限制了XY方向上的采样,只从Z方向上进行采样,标签由离相机方向最近的平面来决定的。这减小了一些模糊的情况,但是不够鲁棒。

本文提出的方法以及启发

FSS在DOS的基础上提出的新的改进,提出的是双样本点的方法,也就是说,在平面内和平面外分别确定两个点,这两个点之间的连线的中间点就必落在 surface在很大的程度上解决了模糊定位的情况,surface的位置就很清晰了。

除此之位的,本文还对较薄的身体位置进行了针对性的设计。对于相对较薄的身体部位而言,根据厚度去调整位移量,从而做到保留住像手指,耳朵,这样的细小的人体结构。并通过设计锚点样本,在这些较薄的区域内,设置一个锚点用于纠正bias。这里的BIAS主要是来自于标签的值,通常情况下,我们会认为大于0.5的值是在surface里面,小于0.5的值是在surface里面,等于0.5的值是surface上面,但是整体统计看来,最大的值也才0.6 所以模型会偏向于将点的值归类为在平面外面。

还有一点可以启发之后的工作,是用tri-pifu的模块代替了MLP 的解码工作。一般的方法都会通过marching cubes来提取网格,这个过程的计算成本特别高而且不可微。 这里改进的是将特征体积视为隐式函数的3D空间(D×H×W),通过Sigmoid激活直接输出0到1的占用值,无需MLP解码。这使得厚度可通过沿z轴求和特征体积来高效计算。

相关推荐
什么都想学的阿超34 分钟前
【大语言模型 00】导读
人工智能·语言模型·自然语言处理
lxmyzzs36 分钟前
【图像算法 - 16】庖丁解牛:基于YOLO12与OpenCV的车辆部件级实例分割实战(附完整代码)
人工智能·深度学习·opencv·算法·yolo·计算机视觉·实例分割
明心知41 分钟前
DAY 45 Tensorboard使用介绍
人工智能·深度学习
维维180-3121-14551 小时前
AI大模型+Meta分析:助力发表高水平SCI论文
人工智能·meta分析·医学·地学
程序员陆通1 小时前
CloudBase AI ToolKit + VSCode Copilot:打造高效智能云端开发新体验
人工智能·vscode·copilot
程高兴1 小时前
遗传算法求解冷链路径优化问题matlab代码
开发语言·人工智能·matlab
拾零吖1 小时前
吴恩达 Machine Learning(Class 1)
人工智能·机器学习
郝学胜-神的一滴2 小时前
Three.js 材质系统深度解析
javascript·3d·游戏引擎·webgl·材质
数据皮皮侠2 小时前
最新上市公司业绩说明会文本数据(2017.02-2025.08)
大数据·数据库·人工智能·笔记·物联网·小程序·区块链
智算菩萨2 小时前
【计算机视觉与深度学习实战】05计算机视觉与深度学习在蚊子检测中的应用综述与假设
人工智能·深度学习·计算机视觉