Fine Structure-Aware Sampling(AAAI 2024)论文笔记和启发

文章目录

本文解决的问题

传统的基于Pifu的人体三维重建一般通过采样来进行学习。一般选择的采样方法是空间采样,具体是在surface的表面随机位移进行样本的生成。这里的采样是同时要在XYZ三个方向上进行。所以这导致了一个问题: 点的位移方向是没有任何约束的,也就是说在任意方向均可采样。可是者在一定的程度上就对确定surface产生了挑战。 因为我们采样的最终目的其实是为了确定目标平面,但是因为方向是随机的就很难准确的找到surface的具体位置,就出现了ambiguity。 就这个问题进行优化的方式比如DOS,限制了XY方向上的采样,只从Z方向上进行采样,标签由离相机方向最近的平面来决定的。这减小了一些模糊的情况,但是不够鲁棒。

本文提出的方法以及启发

FSS在DOS的基础上提出的新的改进,提出的是双样本点的方法,也就是说,在平面内和平面外分别确定两个点,这两个点之间的连线的中间点就必落在 surface在很大的程度上解决了模糊定位的情况,surface的位置就很清晰了。

除此之位的,本文还对较薄的身体位置进行了针对性的设计。对于相对较薄的身体部位而言,根据厚度去调整位移量,从而做到保留住像手指,耳朵,这样的细小的人体结构。并通过设计锚点样本,在这些较薄的区域内,设置一个锚点用于纠正bias。这里的BIAS主要是来自于标签的值,通常情况下,我们会认为大于0.5的值是在surface里面,小于0.5的值是在surface里面,等于0.5的值是surface上面,但是整体统计看来,最大的值也才0.6 所以模型会偏向于将点的值归类为在平面外面。

还有一点可以启发之后的工作,是用tri-pifu的模块代替了MLP 的解码工作。一般的方法都会通过marching cubes来提取网格,这个过程的计算成本特别高而且不可微。 这里改进的是将特征体积视为隐式函数的3D空间(D×H×W),通过Sigmoid激活直接输出0到1的占用值,无需MLP解码。这使得厚度可通过沿z轴求和特征体积来高效计算。

相关推荐
Baihai_IDP1 分钟前
探讨超长上下文推理的潜力
人工智能·面试·llm
文火冰糖的硅基工坊4 分钟前
[人工智能-大模型-116]:模型层 - 用通俗易懂的语言,阐述离散卷积的神奇功能和背后的物理意义
人工智能·深度学习·cnn
rengang665 分钟前
13-卷积神经网络(CNN):探讨CNN在图像处理中的应用和优势
图像处理·人工智能·深度学习·神经网络·cnn
DO_Community9 分钟前
裸金属 vs. 虚拟化 GPU 服务器:AI 训练与推理应该怎么选
运维·服务器·人工智能·llm·大语言模型
CoovallyAIHub9 分钟前
未来已来:从 CVPR & ICCV 观察 2025→2026 年计算机视觉的七大走向
深度学习·算法·计算机视觉
科技峰行者13 分钟前
华为发布Atlas 900 DeepGreen AI服务器:单机柜100PF算力重构AI训练基础设施
服务器·人工智能·华为·aigc·gpu算力
weixin_3077791324 分钟前
应对不规则负载的异步ML模型服务AWS架构设计
人工智能·深度学习·机器学习·云计算·aws
Xander W35 分钟前
基于K8s集群的PyTorch DDP 框架分布式训练测试(开发机版)
人工智能·pytorch·分布式·python·深度学习·kubernetes
Wah-Aug39 分钟前
基于 PyTorch 的 UNet 与 NestedUNet 图像分割
人工智能·pytorch·计算机视觉
云和数据.ChenGuang39 分钟前
感知机之争,杀死神经网络的“人工智能之父”
人工智能·深度学习·神经网络