PyTorch_张量索引操作

简单行,列索引操作

python 复制代码
import torch 
import numpy as np 

# 简单行列索引
def test01():
    data = torch.randint(0, 10, [4, 5])
    print(data)

    # 获得指定的某行元素
    print(data[0])

    # 获得指定某个列的元素
    print(data[:, 0])  # 逗号前面表示行,逗号后面表示列。冒号表示所有行或者所有列

    # 获得指定位置的某个元素
    print(data[1, 2])

    # 表示先获得前三行,再获得第三列的数据
    print(data[:3, 2])

    # 表示获得前三行的前两列
    print(data[:3, :2])

# 列表索引
def test02():
    data = torch.randint(0, 10, [4, 5])
    print(data)

    # 如果索引的行列都是一个一维的列表,那么两个列表的长度必须相等
    # 表示获得 (0, 0), (2, 1), (3, 2) 三个位置的元素
    print(data[[0, 2, 3], [0, 1, 2]])

    # 表示获得 0, 2, 3 行的 0, 1, 2 列
    print(data[[[0], [2], [3]], [0, 1, 2]])


if __name__ == "__main__":
    test02() 

布尔索引

python 复制代码
import torch 
import numpy as np 

# 布尔索引
def test01():
    torch.manual_seed(0)
    data = torch.randint(0, 10, [4, 5])
    print(data)

    # 能够获得该张量中所有大于3的元素
    # 张量可以与数字做比较
    print(data > 3)
    print(data[data > 3])

    # 返回第2列元素大于6的行
    print(data[data[:, 1] > 6])

    # 返回第2行元素大于3的所有列
    print(data[:, data[1] > 3])


# 多维索引
def test02():
    torch.manual_seed(0)
    data = torch.randint(0, 10, [3, 4, 5])
    print(data)

    # 选择第0行的所有元素
    print(data[0, :, :])

    # 按照第1哥维度选择第0元素, 是按行
    print(data[:, 0, :])

    # 按照第2个维度选择第0元素, 是按列
    print(data[:, :, 0])

if __name__ == "__main__":
    test02() 
相关推荐
乾元6 分钟前
AI 在网络工程中的 12 个高频场景深度实战(Cisco / Huawei 双体系)
人工智能
愚戏师31 分钟前
Python3 多线程
linux·运维·服务器·python
子午1 小时前
【食物识别系统】Python+TensorFlow+Vue3+Django+人工智能+深度学习+卷积网络+resnet50算法
人工智能·python·深度学习
曾经的三心草1 小时前
基于正倒排索引的Java文档搜索引擎2-实现Index类
java·python·搜索引擎
Dev7z1 小时前
基于深度学习和图像处理的药丸计数与分类系统研究
图像处理·人工智能·深度学习
疏狂难除1 小时前
尝试rust与python的混合编程(二)
数据库·python·rust
Mxsoft6191 小时前
某次联邦学习训练模型不准,发现协议转换字段映射错,手动校验救场!
人工智能
shayudiandian2 小时前
用PyTorch训练一个猫狗分类器
人工智能·pytorch·深度学习
这儿有一堆花2 小时前
把 AI 装进终端:Gemini CLI 上手体验与核心功能解析
人工智能·ai·ai编程
子午2 小时前
【蘑菇识别系统】Python+TensorFlow+Vue3+Django+人工智能+深度学习+卷积网络+resnet50算法
人工智能·python·深度学习