机器学习和深度学习的对比

深度

  • 数据经过深层网络后,语义信息表征能力强,对几何细节信息表征能力弱。

数据依赖性

  • 深度学习算法需要大量的数据来训练,而传统的机器学习使用制定的规则。
  • 所以,当数据量少时,深度学习的性能差于机器学习;当数据量大时则反之。

硬件依赖性

  • 深度学习算法需要用大量的数据进行矩阵运算,GPU可以高效地进行矩阵运算。所以好的GPU是深度学习的前提。

特征处理

  • 机器学习中,大多数的特征都需要人为地处理成一种特定的数据格式。这需要一定的工作量。
  • 深度学习中,直接将原始数据输入模型,运算得到结果。即端对端。

训练时间

  • 深度学习的参数量很大,数据量很大,需要半天到几周的训练时间
  • 机器学习占时较少,几分钟到几小时。

可解释性

  • 我们可能无法解释某个深度学习算法为什么能取得好的效果,它的节点做了什么事情。
  • 机器学习的决策树、线性回归、逻辑回归等算法都有足够的解释。
相关推荐
想要成为计算机高手38 分钟前
11. isaacsim4.2教程-Transform 树与Odometry
人工智能·机器人·自动驾驶·ros·rviz·isaac sim·仿真环境
NeoFii1 小时前
Day 22: 复习
机器学习
静心问道1 小时前
InstructBLIP:通过指令微调迈向通用视觉-语言模型
人工智能·多模态·ai技术应用
宇称不守恒4.02 小时前
2025暑期—06神经网络-常见网络2
网络·人工智能·神经网络
小楓12012 小时前
醫護行業在未來會被AI淘汰嗎?
人工智能·醫療·護理·職業
数据与人工智能律师2 小时前
数字迷雾中的安全锚点:解码匿名化与假名化的法律边界与商业价值
大数据·网络·人工智能·云计算·区块链
chenchihwen2 小时前
大模型应用班-第2课 DeepSeek使用与提示词工程课程重点 学习ollama 安装 用deepseek-r1:1.5b 分析PDF 内容
人工智能·学习
说私域3 小时前
公域流量向私域流量转化策略研究——基于开源AI智能客服、AI智能名片与S2B2C商城小程序的融合应用
人工智能·小程序
Java樱木3 小时前
AI 编程工具 Trae 重要的升级。。。
人工智能
码字的字节3 小时前
深度学习损失函数的设计哲学:从交叉熵到Huber损失的深入探索
深度学习·交叉熵·huber