机器学习和深度学习的对比

深度

  • 数据经过深层网络后,语义信息表征能力强,对几何细节信息表征能力弱。

数据依赖性

  • 深度学习算法需要大量的数据来训练,而传统的机器学习使用制定的规则。
  • 所以,当数据量少时,深度学习的性能差于机器学习;当数据量大时则反之。

硬件依赖性

  • 深度学习算法需要用大量的数据进行矩阵运算,GPU可以高效地进行矩阵运算。所以好的GPU是深度学习的前提。

特征处理

  • 机器学习中,大多数的特征都需要人为地处理成一种特定的数据格式。这需要一定的工作量。
  • 深度学习中,直接将原始数据输入模型,运算得到结果。即端对端。

训练时间

  • 深度学习的参数量很大,数据量很大,需要半天到几周的训练时间
  • 机器学习占时较少,几分钟到几小时。

可解释性

  • 我们可能无法解释某个深度学习算法为什么能取得好的效果,它的节点做了什么事情。
  • 机器学习的决策树、线性回归、逻辑回归等算法都有足够的解释。
相关推荐
美狐美颜sdk2 小时前
跨平台直播美颜SDK集成实录:Android/iOS如何适配贴纸功能
android·人工智能·ios·架构·音视频·美颜sdk·第三方美颜sdk
DeepSeek-大模型系统教程2 小时前
推荐 7 个本周 yyds 的 GitHub 项目。
人工智能·ai·语言模型·大模型·github·ai大模型·大模型学习
有Li2 小时前
通过具有一致性嵌入的大语言模型实现端到端乳腺癌放射治疗计划制定|文献速递-最新论文分享
论文阅读·深度学习·分类·医学生
郭庆汝2 小时前
pytorch、torchvision与python版本对应关系
人工智能·pytorch·python
IT古董2 小时前
【第二章:机器学习与神经网络概述】03.类算法理论与实践-(3)决策树分类器
神经网络·算法·机器学习
小雷FansUnion4 小时前
深入理解MCP架构:智能服务编排、上下文管理与动态路由实战
人工智能·架构·大模型·mcp
资讯分享周4 小时前
扣子空间PPT生产力升级:AI智能生成与多模态创作新时代
人工智能·powerpoint
叶子爱分享5 小时前
计算机视觉与图像处理的关系
图像处理·人工智能·计算机视觉
鱼摆摆拜拜5 小时前
第 3 章:神经网络如何学习
人工智能·神经网络·学习
一只鹿鹿鹿5 小时前
信息化项目验收,软件工程评审和检查表单
大数据·人工智能·后端·智慧城市·软件工程