Pinocchio导入URDF关节为continuous的问题及详细解释

视频讲解:

Pinocchio导入URDF关节为continuous的问题及详细解释

仓库地址:GitHub - LitchiCheng/mujoco-learning

问题背景:打算测试将之前的panda的urdf换成so-arm100的urdf,发现pinocchio的代码不能用,很奇怪,按照道理都是参数,应该可以直接复用,通过排查,发现时model.nq数量发生了变化,pyroboplan的代码在进行ik时直接越界了

复制代码
   <joint
    name="Shoulder_Rotation"
    type="continuous">
    <origin
      xyz="0 -0.0452 0.0181"
      rpy="1.5708 0 1.5708" />
    <parent
      link="Base" />
    <child
      link="Shoulder_Rotation_Pitch" />
    <axis
      xyz="0 1 0" />
  </joint>

进一步排查:

1.打印panda的model.nq发现和urdf中的关节数量一致,其type为revolute

2.打印so-arm100的model.nq发现比urdf中的joint多了一倍,其type为continuous

通过查看pinocchio的issues,发现如下两个解释:

Continuous joint in URDF adds 2 elements to the configuration space · Issue #794 · stack-of-tasks/pinocchio · GitHub

lowerPositionLimit and upperPositionLimit in pinocchio::Model have unexpected dimensions for unbounded joints - how to read them correctly? · Issue #777 · stack-of-tasks/pinocchio · GitHub

但实际上还没没有讲得很清楚为什么continous类型的joint的nq为2,这里进行探究:

URDF的continuous joint:本质也是一种无旋转角度限制的旋转关节(unbounded revolute joint),理论上应使用单个角度参数θ描述其状态就够了,但是为什么需要用两个,这就要反过来思考了,首先1个配置空间的维度能不能用来描述continuous类型关节对应物理位置,肯定是够了,但会出现一种情况,如关节在θ时和θ+2Π实际上物理位置一致,有无数个数值对应同样的物理位置,对于优化、求解问题来说时冗余的

所以用从如下两个角度可以理解[cosθ, sinθ]的好处:

1.一个数值对对应了一个物理状态,避免求解的冗余问题

2.cosθ和sinθ避免2Π到0的跳跃

下面用python代码来做一个验证

复制代码
import math
# 定义角度
angles = [170, -190, 180, -180, 180, 540]

# 遍历角度列表
for theta in angles:
    # 将角度转换为弧度
    theta_rad = math.radians(theta)
    # 计算 cos 和 sin 值
    cos_theta = math.cos(theta_rad)
    sin_theta = math.sin(theta_rad)
    # 输出结果
    print(f"当 theta = {theta} 度时:")
    print(f"cos(theta) = {cos_theta}")
    print(f"sin(theta) = {sin_theta}")
    print()

可以看到三种情况下数值对均一致

1.170和反方向

2.180°和反向180

3.180和多转一圈

相关推荐
sali-tec18 小时前
C# 基于halcon的视觉工作流-章66 四目匹配
开发语言·人工智能·数码相机·算法·计算机视觉·c#
这张生成的图像能检测吗18 小时前
(论文速读)ParaDiffusion:基于信息扩散模型的段落到图像生成
人工智能·机器学习·计算机视觉·文生图·图像生成·视觉语言模型
新程记18 小时前
2025年,上海CAIE认证报考指南:把握AI机遇的实用起点
人工智能·百度
点云SLAM18 小时前
四元数 (Quaternion)动力学左乘/右乘约定下之误差态 EKF 的连续线性化与离散化传播示例(11)
机器人·slam·位姿估计·imu·四元数·误差状态ekf
unicrom_深圳市由你创科技18 小时前
汽修AI智能体V1.0——从模型微调到应用部署
人工智能
路边草随风18 小时前
milvus向量数据库使用尝试
人工智能·python·milvus
irizhao18 小时前
基于深度学习的智能停车场系统设计与实现
人工智能·深度学习
九河云19 小时前
华为云 ECS 弹性伸缩技术:应对业务峰值的算力动态调度策略
大数据·服务器·人工智能·物联网·华为云
IT空门:门主20 小时前
Spring AI的教程,持续更新......
java·人工智能·spring·spring ai
美狐美颜SDK开放平台20 小时前
美颜sdk是什么?如何将美颜SDK接入安卓/iOS直播平台?
人工智能·美颜sdk·直播美颜sdk·美颜api·美狐美颜sdk