Pinocchio导入URDF关节为continuous的问题及详细解释

视频讲解:

Pinocchio导入URDF关节为continuous的问题及详细解释

仓库地址:GitHub - LitchiCheng/mujoco-learning

问题背景:打算测试将之前的panda的urdf换成so-arm100的urdf,发现pinocchio的代码不能用,很奇怪,按照道理都是参数,应该可以直接复用,通过排查,发现时model.nq数量发生了变化,pyroboplan的代码在进行ik时直接越界了

复制代码
   <joint
    name="Shoulder_Rotation"
    type="continuous">
    <origin
      xyz="0 -0.0452 0.0181"
      rpy="1.5708 0 1.5708" />
    <parent
      link="Base" />
    <child
      link="Shoulder_Rotation_Pitch" />
    <axis
      xyz="0 1 0" />
  </joint>

进一步排查:

1.打印panda的model.nq发现和urdf中的关节数量一致,其type为revolute

2.打印so-arm100的model.nq发现比urdf中的joint多了一倍,其type为continuous

通过查看pinocchio的issues,发现如下两个解释:

Continuous joint in URDF adds 2 elements to the configuration space · Issue #794 · stack-of-tasks/pinocchio · GitHub

lowerPositionLimit and upperPositionLimit in pinocchio::Model have unexpected dimensions for unbounded joints - how to read them correctly? · Issue #777 · stack-of-tasks/pinocchio · GitHub

但实际上还没没有讲得很清楚为什么continous类型的joint的nq为2,这里进行探究:

URDF的continuous joint:本质也是一种无旋转角度限制的旋转关节(unbounded revolute joint),理论上应使用单个角度参数θ描述其状态就够了,但是为什么需要用两个,这就要反过来思考了,首先1个配置空间的维度能不能用来描述continuous类型关节对应物理位置,肯定是够了,但会出现一种情况,如关节在θ时和θ+2Π实际上物理位置一致,有无数个数值对应同样的物理位置,对于优化、求解问题来说时冗余的

所以用从如下两个角度可以理解[cosθ, sinθ]的好处:

1.一个数值对对应了一个物理状态,避免求解的冗余问题

2.cosθ和sinθ避免2Π到0的跳跃

下面用python代码来做一个验证

复制代码
import math
# 定义角度
angles = [170, -190, 180, -180, 180, 540]

# 遍历角度列表
for theta in angles:
    # 将角度转换为弧度
    theta_rad = math.radians(theta)
    # 计算 cos 和 sin 值
    cos_theta = math.cos(theta_rad)
    sin_theta = math.sin(theta_rad)
    # 输出结果
    print(f"当 theta = {theta} 度时:")
    print(f"cos(theta) = {cos_theta}")
    print(f"sin(theta) = {sin_theta}")
    print()

可以看到三种情况下数值对均一致

1.170和反方向

2.180°和反向180

3.180和多转一圈

相关推荐
天***889634 分钟前
在线教育小程序定制开发,知识付费系统AI问答网课录播APP
人工智能·小程序
qq7422349842 小时前
VitePress静态网站从零搭建到GitHub Pages部署一站式指南和DeepWiki:AI 驱动的下一代代码知识平台
人工智能·python·vue·github·vitepress·wiki
式5162 小时前
线性代数(五)向量空间与子空间
人工智能·线性代数·机器学习
yiersansiwu123d8 小时前
AI伦理治理:在创新与规范之间寻找平衡之道
人工智能
程途拾光1588 小时前
AI 生成内容的伦理边界:深度伪造与信息真实性的保卫战
人工智能
趣味科技v8 小时前
亚马逊云科技储瑞松:AI智能体正在重塑未来工作模式
人工智能·科技
GEO AI搜索优化助手8 小时前
GEO生态重构:生成式引擎优化如何重塑信息传播链
人工智能·搜索引擎·生成式引擎优化·ai优化·geo搜索优化
爱笑的眼睛118 小时前
GraphQL:从数据查询到应用架构的范式演进
java·人工智能·python·ai
江上鹤.1488 小时前
Day40 复习日
人工智能·深度学习·机器学习
QYZL_AIGC8 小时前
全域众链以需求为基、政策为翼,创AI + 实体的可行之路
人工智能